Survey of Personal Protective Devices Usage in Industrial Workers in Yazd, Iran in 2011

Amir Houshang Mehrparvar1 Maryam Fazlalizadeh1 *Mehrdad Mostaghaci1

1- Department of Occupational Medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

*mehrdadmostaghaci@gmail.com

(Received: 3 Aug 2014; Revised: 8 Jan 2015; Accepted: 19 May 2015)

Abstract

Background and purpose: Many workers are exposed to workplace hazards. Many occupational diseases are preventable by personal protective devices (PPDs). Though many workers do not use PPDs or their protection by PPDs is not sufficient. This study was designed to assess the quality of PPDs usage among industrial workers.

Materials and Methods: In a cross-sectional study, 648 workers from four main industries (tile and ceramic, metal, textile, and chemical) were evaluated for PPDs use. The quality of appropriate PPDs was defined according to the workplace exposures, available PPDs, and time of exposure. The reasons for non-usage of PPDs were evaluated as well. Data were analyzed by SPSS using chi-square test.

Results: On average, 56.8%, 69.6%, and 61.6% of workers were exposed to noise, and respiratory and dermal exposures, respectively. From the workers who needed PPDs, 77.8%, 26.3%, and 21% used gloves, respirators and hearing protection devices, respectively. The most frequent reason for non-usage was discomfort while wearing PPDs.

Conclusion: This study showed an unsatisfactory situation in the industries for PPDs usage: Low compliance rate, inadequate training programs, and low quality of usage.

Key words: Workplace, Protective Devices, Ear Protective Device, Respiratory Protective Device, Gloves Protective
1. Introduction

Occupational health is an important concern of the working population (1). Occupational exposure to different hazards may result in different kinds of diseases. The most common occupational diseases are upper respiratory irritation, occupational asthma and bronchitis, noise-induced hearing loss and contact dermatitis (2).

Analysis by the British Health and Safety Executive suggests that 5.5 million employees in 224,000 workplaces in Great Britain could be at risk of occupational respiratory diseases (3). Approximately, 600 million workers are exposed to occupational noise worldwide (4). There is a high prevalence of hearing loss in workers exposed to hazardous noise (5). It is estimated that 16-24% of hearing impairment is work-related (6). 22 million US workers (17%) reported exposure to hazardous workplace noise (7).

It is estimated that more than 13 million workers in the United States are potentially exposed to chemicals that can be absorbed through the skin and may cause different dermatologic diseases (8). Most occupational diseases are preventable by different methods such as engineering controls, administrative measures and personal protective devices (PPDs) (9). The engineering and administrative measures are more acceptable but more costly. It is recommended that when these control measures are not feasible, PPDs should be used (5,7,10); though many workers do not use PPDs or their protection by PPDs is not sufficient due to different reasons (11-15).

Macfarlane et al. found that up to 10-40% of farmers do not use respirators during work with pesticides (13). Edelson et al. in a study on construction workers showed that only 20% of the workers used ear protectors more than 90% of the time (16). Rashaad and Dickinson in a study on gold miners showed that 93% of workers reported using hearing protection devices (HPDs), but only 50% of them were observed wearing HPDs (14). Maisareh and Saeid investigated the workers of a factory and showed that although HPDs were provided for 80.5% of the workers, only 5.1% wore it regularly (17).

There are different reasons for workers not wearing PPDs, i.e., lack of knowledge, concern that it may impair ability to communicate, discomfort, and lack of availability (7,18,19).

Our country as a developing country experiences a fast development in various industries; so many workers in these industrial settings are exposed to different occupational hazards especially chemical and physical ones. Prevention of occupational diseases is very important in this population. Due to the high cost of engineering and administrative controls, using PPDs is an important control measure.

In this study, we aimed to evaluate the quality of using various PPDs (including HPDs, respirators and gloves) by workers in various industries and the reasons for not to use them.

2. Materials and Methods

In a cross-sectional descriptive study from May to September 2011, 648 workers were evaluated for PPDs use. The subjects were selected by cluster sampling from six industrial workplaces in Yazd, Iran. Clusters were selected from main industries in this province, i.e. tile and ceramic, metal, chemical manufacturing and textile industries.

A questionnaire including demographic data was filled for each subject. Workplace exposures (including chemical and physical) were evaluated by an industrial hygiene institute and the most important physical and chemical hazards were identified. The appropriate HPD (considering noise reduction rating) was defined according to the noise level. The appropriate respirator was defined according to the most important and dangerous inhalational exposure, and the
appropriate gloves were defined according to
the most important and dangerous chemicals
with dermal exposure. Noise exposure at or
>85 dB (8 h time-weighted average) (20) and
respiratory and dermal exposures more than
threshold limit value (21) were defined as the
situations in which the workers needed to use
HPDs, respirators and gloves, respectively.

Then, the response to these questions was
obtained from interview with the worker and
was approved by a walkthrough survey and
interview with the factory industrial hygienist
and the employer:
• Does the worker need a kind of PPD
(HPD/respirator/gloves)?
• Is appropriate PPD
(HPD/respirator/gloves) available for the
worker?
• If yes, does the worker use the PPD
(HPD/respirator/gloves)?
• If yes, does the worker correctly use the
PPD (HPD/respirator/gloves)?
• Is the worker trained about using the
PPD?

Data were analyzed by SPSS for Windows
(version 19, SPSS Inc., Chicago, IL, USA)
using chi-square test. The level of significance
was set at P < 0.050. An informed consent
was obtained from all subjects. This research
was approved by the ethics committee of the
research council of Shahid Sadoughi
University of Medical Sciences

3. Results
Six hundred and forty-eight industrial workers
from four main industries in Yazd (tile, metal,
textile and chemical manufacturing) including
eight factories (two factories from each
industry) entered the study. The average age
of the workers was 34.8 ± 9.67 years (range:
19-67 years). On average, they had worked for
9.07 ± 6.20 years (range: 0.1-28 years).

The number of participants from tile, chemical, metal and textile industries was 124
(19%), 109 (17%), 271 (42%) and 144 (22%),
respectively. On average 368 workers (56.8%)
were exposed to respiratory hazards, 451
(69.6%) to dermal hazards and 399 (61.6%) to
the loud noise who needed PPDs. Gloves were
the PPDs, which were most frequently used
when needed. The detailed data are shown in
tables 1-4. Table 1 shows the frequency of
using PPDs when needed.

<table>
<thead>
<tr>
<th>PPDs</th>
<th>PPDs needed</th>
<th>PPDs used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respirator</td>
<td>368 (56.8)</td>
<td>97 (26.3)</td>
</tr>
<tr>
<td>Gloves</td>
<td>451 (69.6)</td>
<td>351 (77.8)</td>
</tr>
<tr>
<td>Hearing protect</td>
<td>399 (61.6)</td>
<td>84 (21)</td>
</tr>
</tbody>
</table>

PPD: Personal protective devices

From these subjects the frequency of using
respiratory, hearing and skin protecting
devices in the whole shift was 28%, 43% and
20%, respectively. Table 2 shows that how the
workers in all evaluated factories used PPDs.

There was a statistically significant
difference in PPDs use among different age
groups, hence younger workers less frequently
used PPDs (P < 0.001, odds ratio = 0.332,
95% confidence interval [CI] = 0.238-0.463).
This difference was also significant for
respirators, gloves, and hearing protectors,
separately. There was a statistically significant
difference between duration of employment
and PPDs use, hence the lower the duration of
employment, the less PPDs use (P < 0.001,
odds ratio = 0.376, 95% CI = 0.266-0.531).

Type of industry had a significant effect on
PPDs use. Table 3 shows the frequency and
quality of PPDs use in different industries.

All groups of workers were asked about
training for indication of use and usage of
PPDs. Totally 8.3%, 2% and 29% have
received training sessions about respirators,
ear protectors and gloves, respectively.

Table 4 shows the frequency of reasons for
not using PPDs. Some workers needed more
than 1 kind of PPDs and some selected more
than 1 reason.
4. Discussion

One of the methods of controlling occupational exposures is using PPDs. Different kinds of PPDs are used in various workplaces for workers’ protection against occupational hazards. In our country, PPDs with most frequent use include: Ear protectors, respirators, and gloves. PPDs as
the last control measure in the workplace are very popular due to their low cost in comparison to other controls such as engineering and administrative. In this study, we evaluated the frequency of PPDs use and the quality of their usage in four main industries in Yazd, Iran in 2011.

Findings of this study suggest that workers are exposed to various health hazards in the workplaces, and regular and correct use of PPDs was not satisfactory, which was consistent with some other studies (22-28).

The number of workers who were trained about PPDs was very low for hearing and respiratory protection, but was good for skin protection. In the study of Greskevitch et al. in the USA, the level of training for respirator use was much higher than our study, although they had evaluated a different industry (12).

In the current study, younger people used PPDs less satisfactorily which was consistent with the study of Macfarlane et al. (13). Among three kinds of PPDs, the highest compliance rate was observed for gloves, which was consistent with the study of Giannandrea et al., although they had compared gloves with some PPDs other than respirators and HPDs (15).

The compliance rate of respirator usage was low (about 26%) in this study consistent with some other studies (13,14,17). The frequency of respirator usage was 10-40% in the study of MacFarlane et al. (13). The frequency of HPDs usage in this study was very low (21%) and lower than the two other PPDs which was consistent with the study of Rashaad and Dickinson (14); this frequency was 62% in the USA (29) and 28% in Nigeria (27).

The most frequent reason for non-usage of PPDs was discomfort with their use. The two other most common reasons include lack of knowledge about their benefits and difficulty in communication (especially for HPDs) consistent with the study of Kahan and Ross (30) and Svensson et al. (31). In the study of Rashaad and Dickinson the most frequent reason for non-usage of HPDs was lack of knowledge about noise effects on hearing (14).

In our study, the overall quality of PPDs usage was better in the metal industry, which may be due to the workers’ consideration of the metal industry as a very hazardous workplace, and also it can be explained by this fact that in this province, metal factories are larger and more developed than other industries.

Limitations

We could not assess other PPDs (e.g. goggles) because they are not routinely used in our industries. Most of the industrial workers in our country are males, so we couldn’t compare the variables between two genders.

Conclusion

This study showed an unsatisfactory situation in the industries for PPDs usage: Low compliance rate, insufficient training programs, and low quality of usage. Considering the high frequency of workers’ exposure to occupational hazards and the importance of PPDs for protection, paying attention to this problem would be critical.

Acknowledgement

This study was originated from a residency thesis in occupational medicine (No= 32456). Authors are grateful to Mr. Jalal Kariminia, industrial hygienist, who collaborated in this project.

References

3. Thompson G, Wake MH. First findings from wave 1 of the FIT3 employer and worker
25. Rongo LM, Barten F, Msamanga GI, Heederik D, Dolmans WM. Occupational exposure and

