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Abstract 
Background and purpose: The aim of this study was to evaluate the efficiency of zinc oxidenanoparticles 

(ZnO NPs) in combination with US-H2O2 advanced oxidation processes (AOPs) for the removal of antibiotic 

amoxicillin (AMO) from aquatic environment.  

Materials and Methods: This experimental study was conducted in a batch reactor system. The effect of 

the parameters, such as pH (3-8), the dose of nanoparticles (0.01-0.08 g/L), reaction time (10-100 min), the 

initial concentration of the AMO (150-250 mg/L) and H2O2 (0.1 – 5Mol/L) on the removal efficiency were 

studied in ultrasonic reactor. The residual AMO concentrations were measured at 190 nm using a UV/Vis 

spectrophotometer. 

Results: The results showed that the US-H2O2 advanced oxidation processes using ZnO NPs can effectively 

lead to the removal of AMO from the wastewater. The optimal conditions for this process were pH 3, 0.1 

M of H2O2 and the dose ZnO NPs 0.05 g/L and time of 60 minutes. In the current study, it was found that 

the removal efficiency dropped with the increasing concentrations of AMO. Under optimal conditions with 

150 mg/L of AMO and contact time of 60 min, the efficiency removal was also equal to 92.47%. 

Conclusion: The results of this study showed that AOP was a very effective method that can be used for the 

removal of AMO antibiotic from aqueous solutions. 
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1. Introduction  

The pollution of surface and groundwater 

has caused many health problems where 

antibiotics have been one of the main 

pollutants (1). The antibiotics have a 

special position in the human and 

veterinary treatment, and incidental entry of 

different types of antibiotics to sewage as 

well as effluent was known as one of the 

sources of antibiotic in the environment (2). 

Among the antibiotics, the Beta-lactam 

compounds which include amoxicillin 

(AMO) have been the most common drugs 

(3). 

The Beta-lactam compounds consist of 

agents that contain a beta-lactam ring in 

their molecular structures which provides 

antimicrobial properties against positive 

and negative gram bacteria (4). The AMO, 

C6H19N3O5S is semi-synthetic penicillin 

with B-lactam ring with a molecular weight 

of 4.365 g/mol, showing high solubility in 

water and preventing resistance cell wall in 

bacteria (4, 5). AMO properties cause many 

unwanted effects including low biological 

decomposition ability, high toxicity, 

carcinogenesis, and mutagenesis effects, 

damaging the DNA and lymphocytes, 

increasing the allergic reactions, and 

providing drug resistance (6). 

The introduction of effluents containing 

antibiotics result in serious and hazardous 

consequences for the environment, so 

efficient and effective techniques are 

necessary to remove the pollutants (7). The 

chemical and physical methods for 

purification of water polluted with different 

types of antibiotics include: chemical 

oxidation, biological decomposition, and 

physical purification (8, 9). However, 

biological purification of antibiotics is 

difficult as antibiotics have naphtol stable 

ring (main structure), and are toxic to 

microorganisms (8). Recently, Advanced 

Oxidation Process (AOP) has been 

introduced as a new method for purifying 

the effluents containing antibiotics (9). The 

oxidation process is one of the common 

methods in removing the pollutants because 

of simplicity, low costs, and high efficiency 

(8). The advanced oxidation process is also 

based on producing the strongest oxidants, 

such as hydroxyl radical in solution (8, 9). 

Using ultrasonic in AOP among the 

methods that produce hydroxyl radical is 

novel (10). 

The water molecules are broken, and the 

products are hydroxyl radical and free 

hydrogen (11). The reaction generates and 

further destructs gaseous bubbles yielding 

in high pressure and temperature (10, 11). 

Therefore, the soluble organic compounds 

are destructed thermally producing free 

radicals, such as (O•, OH•, and H•), or some 

oxidants, such as hydrogen peroxide, that 

react with organic compounds (12). 

Hydrogen peroxide (H2O2) is a well-known 

oxidant which is stronger than chlorine, 

chlorine dioxide, and potassium 

permanganate (13). This compound 

produces OOH• and OH• radicals, which 

can oxidize organic compounds once 

diffused into water (13, 14). One of the 

advantages of this process is the lack of 

production of carcinogenic side effects. 

There is no need for the use and storage of 

hazardous chemicals, and just a small space 

is required for the instllation of an 

ultrasonic unit (14). The presence of silica 

particles, active carbon, active alumina, 

copper and zinc oxides (ZnO), for example, 

increase the cavitation effect and the 

decomposition rate of organic molecules 

(15, 16). Nanoparticles (NPs) of metal 

oxides include F2O3, ZnO, and TiO2 which 

possess unique optical, catalytic, 

semiconductor, and piezoelectric properties 

that are developed technologically (17). 
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The aim of this study was to evaluate the 

efficiency of zinc oxidenanoparticles (ZnO 

NPs) in combination with US-H2O2 

advanced oxidation processes for the 

removal of antibiotic amoxicillin from 

aquatic environments. 

2. Materials and Methods 

2.1. Materials 

Amoxicillin (AMO) was supplied by 

Sigma–Aldrich (US). Its pKa value is 2.7, 

7.5, and 9.63 (8). The chemical structure of 

AMO is as shown below (Figure 1). All 

reagents [sodium hydroxide (NaOH, 98%), 

and sulfuric acid (H2SO4, 99.99%)] were of 

analytical grade and purchased from Merck 

(Germany). All solutions were prepared by 

using de-ionized water. The pH of the 

solution was also adjusted by adding HCl or 

NaOH 0.1 N solutions. 

 

 

 

Figure 1. The chemical structure of AMO (8) 

 

2.2. Pilot ultrasonic reactor 

The reactor used for the study had a 

determined surface area containing digital 

ultrasonic (Elma CD-Germany, 4820), 

appliance made of Plexiglas with volumes 

of 3.7L, input energy per unit 2.5 W/cm2, 

and input power 500 W with 100 mL 

samples in bath with US waves. 

2.3. Experimental methods 

The stock solution of AMO was prepared 

with a concentration of 1000 mg/L in 

double distilled water. The sample water 

pH was adjusted to given values using 0.1 

N HCl or 0.1 N NaOH. Four process 

variables have been studied in the current 

study, which include: the initial pH of 

solution (3, 5, 7 and 8), concentration of 

zinc oxidenanoparticles (ZnO NPs) (0.01, 

0.02, 0.03, 0.04, 0.05 and 0.08 g/L), contact 

time (10, 20, 45, 60 and 100 min), 

concentration of H2O2 (0.1, 0.5, 0.7, 5 

Mol/L), and the initial concentrations of 

AMO (50, 150, 200 and 250 mg/L). After 

measuring the final, fixed pH (by means of 

MIT65 pH meter), the samples were poured 

into 250 mL Erlenmeyer flasks, and ZnO 

NPs was added inside the ultrasonic 

apparatus and treated under ultrasound 

waves (60 kHz) according to the set 

different contact times. The residual 

concentrations of AMO were measured 

usinga UV/Vis spectrophotometer 

(Shimadzu Model: CE-1021-UK) at λ=190 

nm (18) .The removalefficiency: R (%) was 

calculated based on the following formula 

(19, 20):  
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Where, C0 and Cf is the initial and 

equilibrium liquid phase concentration of 

AMO (mg/L), respectively. 

The sample standard deviation of the 

metabolic rate for the female fulmars is 

calculated as follows (21). 

{\displaystyle s={\sqrt {\frac {\sum 

_{i=1}^{N}(x_{i}-{\overline 

{x}})^{2}}{N-1}}}.}   

        𝑆𝐷 = √
1

𝑁
∑ (𝑥𝑖

𝑁
𝑖=1 − 𝜇)2                    (2) 

where (x1,x2,..xN) are the observed values 

of the sample items, µ is the mean value of 

these observations, and N is the number of 

observations in the sample. 

3. Results  

3.1. Effect of the initial pH on 

US/H2O2/ZnO reactions 

As is illustrated in Figure 2, under time 

contact of 30 min, the concentration of 

hydrogen peroxide was equal to 0.5 Mol/L, 

and the concentration of AMO of 100 

mg/L for the tested pH range was 

optimally pH= 3. As there can be 

observed, the process efficiency rate was 

98.98% under these conditions. 

 

 

Figure 2. Effect of pH on removal efficiency of AMO 

(US frequency: 60 kHz, H2O2 concentration: 0.5 mol/L, C0:100 mg/L and ZnO NPs: 0.05 g/L) 

 

3.2. Effect of the initial concentrations 

of ZnO NPs 

To determine the optimal dose of ZnO NPs 

in the ultrasound-hydrogen peroxide 

process, the concentrations of 0.02, 0.03, 

0.04, 0.05, and 0.08 g/L nanoparticles were 

investigated. A solution of 100 mg/L AMO 

and hydrogen peroxide with a  

concentration of 0.5 Mol/L at pH 3 was 

prepared, and nanoparticles were exposed 

to contact, as demonstrated in Figure 3. It 

was also observed that the dose of ZnO NPs 

above 0.05 g/L caused much higher 

removal efficiency (99.98%) in comparison 

to concentration of 0.02 g/L (97.5%).  
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Figure 3. Effect of concentration of ZnO NPs on the removal efficiency of AMO 

(US frequency: 60 KHz, H2O2 concentration: 0.5 Mol/L and C0:100 mg/L) 

 

3.3. Effects of the initial concentration 

of hydrogen peroxide 

The effects of hydrogen peroxide on the 

removal of AMO were determined for the 

concentration of 100 mg/L of AMO (Figure 

4). The maximum removal efficiency was 

obtained at the concentration of H2O2 equal 

to 0.1 Mol/L.  

 

 
Figure 4. Effect of the concentration of H2O2 on the removal efficiency of AMO 

(US frequency 60 kHz, pH: 3 and C0:100 mg/L) 
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3.4. Effects of Time and AMO 

concentration 

In the current study, the effect of increasing 

bleaching concentration on the efficiency 

of the ultrasonic process in combination 

with ZnO NPs and hydrogen peroxide was 

investigated. The concentrations of 150, 

200 and 250 mg/L were prepared and tested 

in the above process. As can be seen (Figure 

5), the mentioned efficiency rates for AMO 

at the mentioned concentrations at 60 min 

were 90.17%, 86.9% and 88%, 

respectively. 

 

Figure 5. Effect of Time on removal efficiency of AMO 

(US frequency 60 KHz, H2O2 concentration 0.2 mol/L and pH: 3) 

 

3.5. Kinetic studies of AMO degradation  

The kinetic model of the pseudo first order 

reaction was used. The kinetics constants of 

AMO are shown in Table 1. The results 

showed that for the different values of the 

correlation coefficient achieved for the 

three concentration forms (Table 1 and 

Figure 6), pseudo-second-order kinetic 

showed the best correlation coefficient 

(R2=0.95 at C0= 150 mg/L).  

 

Figure 6. Pseudo-first-order, plot of AMO 
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Table 1. Pseudo first order kinetic for the AMO degradation process 

C0 K0(min-1) R2 SD 

150 0.0124 0.95 0.81 

200 0.0117 0.883 0.9 

250 0.0116 0.8401 1.1 

 

4. Discussion 

Effect of pH (Figure 2) was an important 

parameter in these reactions. Solution pH 

affected the velocity of the reactions that 

occur on the surface of semiconductor 

particles by influencing the properties of 

the surface charge (21, 22). The highest 

removal rate was observed at PH 3. Kamani 

et al. (date of publication) used various pH 

to decompose erythromycin and 

metronidazole, and the results showed that 

the son-nanocatalyst process had maximum 

decomposition power under acidic 

conditions. The removal efficiency rate of 

erythromycin and metronidazole pH 3 was 

95% (23). As is shown in Figure 3, it was 

observed that the dose of zinc 

oxidenanoparticles (ZnO NPs) above 0.02 

g/L caused much higher removal efficiency 

(99%). The higher doses did not change the 

efficiency. However, in some studies, the 

positive effect of nanoparticle 

concentration (as a catalyst) has been 

mentioned. Masombaigi et al. (date of 

publication) reported that improved catalyst 

performance at higher concentrations was 

related to more active places on the catalyst 

surface and possibly the stronger ultraviolet 

radiation effect on it. In this study, as 

mentioned earlier, removal efficiency was 

increased with increased concentrations of 

nanoparticles to 0.05g/L (21, 23). The 

frequency of collision of the substrate and 

antibiotic molecules has increased with 

increasing the concentration of hydrogen 

peroxide, so the removal efficiency was 

increased by using more concentrated 

H2O2. In addition, higher concentration of 

hydrogen peroxide resulted in increased 

generation of hydroxyl radicals due to 

stronger interactions of ultrasounds with 

hydrogen peroxide molecules. The radicals 

oxidized antibiotic molecules and thus 

decreased their concentrations. Initially, the 

removal velocity was high, followed by a 

decrease (24). However, this phenomenon 

was not observed in the present study. The 

results are shown in Figure 5. As can be 

seen, the mentioned efficiency rates for the 

AMO at the mentioned concentrations at 60 

min were 90.17%; by increasing the initial 

AMO concentration, the removal efficiency 

was decreasing. At the beginning, the AMO 

concentration was high, and the possibility 

of collision between AMO molecules and 

free radicals of hydroxyl has increased. 

After a while, with decreasing the AMO 

concentration, the free radicals of hydroxyl 

in pilot oxidized the AMO metabolites. 

Therefore, the removal process showed 

lower velocity (25, 26). The study results 

showed that ZnO-H2O2-US followed 

pseudo first order kinetics.  The result 

obtained was found similar or even better 

than those reported by other authors (Table 

2). 
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Table 2. Removal percentages of antibiotics reported by different authors with time of reaction, 

catalyst type, and antibiotics concentrations 

AOP antibiotics Operational condition results reference 

Nano/Persulfate 

Process 

Metronidazole - Initial antibiotic concentration = 52 mg/L 

-  Catalyst dosage(nZVI) = 0.5 g/L 

- Reaction time = 30 min 

- Persulfate= 1.85 Mm 

- pH=3 

 

removal 

efficiency =90.3% 

 

(27) 

nano-

sonocatalytic 

tetracycline - Initial antibiotic concentration = 27 mg/L 

-  Catalyst dosage (TiO2)= 522 mg/L 

- pH = 4 

- Irradiation time = 60 min 

- Frequency=35 kHz 

- hydrogen peroxide= 100 mg/l 

 

 

removal 

efficiency =94% 

 

(28) 

H2O2/ ZnO  

Ceftriaxone 

- Initial antibiotic concentration = 5 mg/L 

- H2O2/ ZnO  molar ratio= 1.5 

- time = 90 min 

- pH=11 

 

 

removal 

efficiency =92% 

 

 

(29) 

5. Conclusions  

In the present study, the advanced oxidation 

process (AOP) removal of amoxicillin 

(AMO) from aqueous solutions was 

investigated. The effect of oxidation 

process parameters, pH, dosage, 

concentration of hydrogen peroxide, initial 

concentration of AMO, and contact time 

were investigated. Optimum conditions of 

pH 3, contact time of 60 min, AMO 

concentration of   150 mg/L, and zinc 

oxidenanoparticles (ZnO NPs) of 0.02 g/L, 

and concentration of hydrogen peroxide 0.1 

Mol/L were obtained, which gave AMO 

removal efficiency of 90.17%. The results 

revealed that the experimental data fit the 

pseudo-first -order kinetic (R2 = 0.95 at 150 

mg/L AMO concentrations). From the 

study, it was deduced that the SD can be 

used for the optimization of the process 

parameters for AMO removal from 

aqueous solutions and the advanced 

oxidation process.  
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