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Background and Purpose: Genomic selection is used to select candidates for breeding programs 
for organisms. In this study, we use the Bayesian model averaging (BMA) method for genomic 
selection by considering the skewed error distributions.

Materials and Methods: In this study, we apply the BMA method to linear regression models with 
skew-normal and skew-t distributions to determine the best subset of predictors. Occam’s window 
and Markov-Chain Monte Carlo model composition (MC3) were used to determine the best model 
and its uncertainty. The Rice SNP-seek database was used to obtain real data, which included 152 
single nucleotide polymorphisms (SNPs) with 6 phenotypes.

Results: Numerical studies on simulated and real data showed that, although Occam’s window ran 
faster than the MC3 method, the latter method suggested better linear models for the data with 
both skew-normal and skew-t error distributions.

Conclusion: The MC3 method performs better than Occam’s window in identifying the linear 
models with greater accuracy when dealing with skewed error distributions.
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Introduction

enetic studies using single nucleotide 
polymorphisms (SNPs) have been widely 
used to identify genetic variants associ-
ated with complex traits. Bayesian linear 
models have emerged as a popular tool for 

analyzing SNP data due to their ability to handle high-
dimensional data and their ability to incorporate prior 
information into the analysis. Bayesian linear models 
involve finding the relationship between a dependent 
variable and one or more independent variables, which 
are also known as predictors or covariates. In genetic 
studies using the SNP data, the dependent variable is 
often a complex trait or disease status, and the indepen-
dent variables are genetic variants, such as SNPs. Bayes-
ian linear models can be used to test the association 
between the dependent variable and each independent 
variable when it is controlled by other covariates, such 
as age, sex, and environmental factors. 

Bayesian approach has several advantages over the 
traditional frequentist approach, including the ability to 
handle complex models and incorporate prior knowl-
edge or beliefs into the analysis. In genetic studies, the 
Bayesian approach can be used to utilize prior informa-
tion on genetic effects or to borrow strength across re-
lated traits or populations. One of the key advantages of 
Bayesian linear models in genetic studies is their ability 
to account for uncertainty in estimating genetic effects 
[1-6]. By modeling the uncertainty in the estimates, 
Bayesian methods can provide more accurate estimates 
of effect sizes and standard errors, and can also facilitate 
model selection and hypothesis testing.

In recent years, several Bayesian linear models have 
been proposed for genetic studies using the SNP data, 
including Bayesian sparse linear mixed models, Bayes-
ian spike-and-slab regression models, and Bayesian 
variable selection models [7]. These models have been 
used to identify genetic variants associated with com-
plex traits, predict the traits using the SNP data, and 
identify genetic pathways involved in disease pathogen-
esis. Note that selecting the best predictors is among 
the most important aspects of building a linear model. 
The aim is to find the “best” model based on a subset of 
predictors, denoted as X1, X2, ..., Xk . The model is written 
as (Equation 1):

1. 

 

: 

𝑌𝑌 = 𝛽𝛽� + ∑ 𝛽𝛽�
�
��� 𝑋𝑋� + 𝜖𝜖 (1) 

 

𝑃𝑃𝑃𝑃(𝛥𝛥|𝐷𝐷) = ∑ 𝑃𝑃�
��� 𝑃𝑃(𝛥𝛥|𝑀𝑀�, 𝐷𝐷)𝑃𝑃𝑃𝑃(𝑀𝑀�|𝐷𝐷)                    (2) 

 

𝑃𝑃𝑃𝑃(𝑀𝑀�|𝐷𝐷) = ��(�|��)��(��)
∑ ��

��� �(�|��)��(��)                                         (3)                                       

 

𝑃𝑃𝑃𝑃(𝐷𝐷|𝑀𝑀�) = ∫ 𝑃𝑃𝑃𝑃(𝐷𝐷|𝜃𝜃�, 𝑀𝑀�)𝑃𝑃𝑃𝑃(𝜃𝜃�|𝑀𝑀�)  𝑑𝑑𝜃𝜃�    (4) 

 
−𝐸𝐸[log ∑ 𝑃𝑃�

��� 𝑃𝑃(𝛥𝛥|𝜃𝜃�, 𝑀𝑀�)𝑃𝑃𝑃𝑃(𝑀𝑀�|𝐷𝐷)] ≤
−𝐸𝐸�log𝑃𝑃𝑃𝑃�𝛥𝛥|𝑀𝑀�, 𝐷𝐷��,          (𝑗𝑗 = 1,2, . . . , 𝐾𝐾)  (5) 

 

 

𝐴𝐴� = �𝑀𝑀�: ������(��|�)
��(��|�) ≤ 𝐶𝐶�                            (6) 

 

𝐵𝐵 = �𝑀𝑀�: ∃𝑀𝑀� ∈ ℳ, 𝑀𝑀� ⊂ 𝑀𝑀�, ��(��|�)
��(��|�)�           (7) 

 

 

𝑃𝑃𝑃𝑃(𝛥𝛥|𝐷𝐷) =
∑ ���∈� �(�|��,�)��(�|��)��(��)

∑ ���∈� �(�|��)��(��)   (8) 

 

𝐴𝐴 = 𝐴𝐴�\𝐵𝐵 ∈ ℳ 

 

 𝑅𝑅𝑃𝑃𝑀𝑀 = ��(��|�)
��(��|�)                                (9) 

 

, where p≤k. In genetic studies, selecting the best ge-
netic model (e.g. identification of sensitive and reliable 

predictors for early detection of cancer cells in clinical 
trials) is very important [8]. Bayesian model averaging 
(BMA) addresses this issue by considering a set of can-
didate models, each of which represents a different hy-
pothesis about the underlying relationship between the 
response variable and the predictors [9-11]. Each model 
assigns a prior probability that reflects the degree of be-
lief in its validity before observing the data. The prior 
probabilities can be based on prior knowledge or be 
assigned using the Bayesian model selection technique 
[12]. The posterior probabilities of the models are used 
to compute the model-averaged prediction, which is a 
weighted average of the predictions from each model. 
This leads to a more robust and reliable prediction, 
since it considers the uncertainty about the true model 
[12, 3].

Also, in linear models, the distribution of errors is typi-
cally assumed to follow the normal distribution. How-
ever, in reality, the assumption of normality may not 
be appropriate, which is the interest of this study. This 
article considers the skew-normal and skew-t distribu-
tions of errors, and the linear models with these two 
distributions in the Bayesian framework are introduced. 
The BMA is used to select the best linear model for the 
SNP data. In this regard, the numerical studies on real 
and simulated SNP data are carried out.

Materials and Methods

In this study, the BMA is carried out based on two ap-
proaches. The first one is Occam’s window. This method 
includes averaging over a decreased set of models. The 
Markov-Chain Monte Carlo model composition (MC3) is 
the second approach developed by Madigan and York 
[4]. By this approach, we can estimate the full solution 
directly for linear regression models. It employs the 
Markov-Chain Monte Carlo (MCMC) method that gen-
erates a process that moves through the model space 
to approximate the posterior distribution of the variable 
of interest.

Accounting for model uncertainty using BMA

We know that if a single best model is considered as 
the true model, inferences based on the model ignore 
model uncertainty, which can lead to underestimating 
uncertainty about interested quantities. Leamer [13] 
proposed a standard Bayesian approach to this issue 
(Equation 2). Let M={M1, ..., MK} be the set of all models 
under study that could describe the data, and Δ is the 
amount of interest, such as a future observation. Given 

G
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the data D, the posterior distribution of Δ is calculated 
as:

2.
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This is a weighted average of the posterior distribu-
tions (i.e. BMA). In Equation 2, the posterior probability 
of the model Mk is obtained as:

3.
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Where,

4.
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In Equations 3 and 4, Pr(D|Mk) is the marginal likeli-
hood of the model Mk, θk is the parameter of model 
Mk, Pr(D|θk, Mk) is the prior distribution of θk under the 
model Mk, Pr(D|θk, Mk) is the likelihood, and Pr(Mk) is 
the prior probability of the true model Mk. As can be 
seen, all models are taken in to consideration. Averaging 
over all the models gives a higher predictive ability than 
the use of any single model (Mj), since:

5
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In the implementation of BMA, there are two prob-
lems: (i) High integrals in Equation 4 make it difficult to 
compute posterior probabilities; (ii) There are a huge 
number of models in Equation 2. In the next section, we 
explain two approaches for solving these problems.

Occam’s window 

The first method for accounting for the model uncer-
tainty is Occam’s window [3]. This approach lies in two 
basic principles:

(i) Discarding the models with fewer predictions: If a 
model provides less accurate predictions than the best 
model, it should be neglected and discarded. Therefore, 
the models that do not belong to the set:
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should be removed from Equation 2. In the Equation 
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This largely reduces the number of models in Equation 
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In Equation 9, M0, is a model smaller than the two 

models and the model M1 is larger. Two models are 
evaluated based on their PRM. In this regard, we make 
decisions about the models as:

1. If log(RPM) value is positive (i.e. the given data is 
an evidence for the smaller model), we reject M1 and 
consider M0 ;

2. If log(RPM) value is small and negative, we consider 
both models;
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3. If log(RPM) value is large and negative, i.e. smaller 
than OL=-log(C) where C is defined by the researcher, we 
reject M0 and consider M1.

The basic concept is shown in Figure 1. Madigan and 
Raftery [3] gave a detailed description of Occam’s win-
dow algorithm and showed how averaging over the se-
lected models gives better predictive performance than 
any single model in each of the considered cases.

Markov-Chain Monte Carlo model composition

In the MC3 method, the MCMC approach is used to 
approximate Equation 2 [14]. A modified version of 
the MC3 method adopted from Madigan and York [4] is 
used in this study, which generates a stochastic process 
that moves through model space. A Markov chain M(t), 
t=1, 2,... with state space M and equilibrium distribu-
tion Pr(Mi|D) can be constructed. If this Markov chain is 
simulated for t=1, . . . , N, under certain regularity condi-
tions, for any function f(Mi) defined on M, the average:
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is an estimate of E(f(M)) as 𝑁𝑁 → ∞ [13]. 
To compute Equation 2  by this approach, set 𝑓𝑓(𝑀𝑀) = 𝑃𝑃𝑃𝑃(𝛥𝛥|𝑀𝑀, 𝐷𝐷). To construct the Markov 
chain, for each 𝑀𝑀 ∈ ℳ, a neighborhood nbd(M) is defined that includes the model M itself and 
the set of models with one edge more or fewer than M. Its transition matrix q is defined by setting 
𝑞𝑞(𝑀𝑀 → 𝑀𝑀�) = 0 for all 𝑀𝑀� ∉ 𝑛𝑛𝑛𝑛𝑛𝑛(𝑀𝑀) and 𝑞𝑞(𝑀𝑀 → 𝑀𝑀�) ≠ 0, constant for all 𝑀𝑀� ∈ 𝑛𝑛𝑛𝑛𝑛𝑛(𝑀𝑀). If the 
chain is in state M, we access to state 𝑀𝑀� by considering 𝑞𝑞(𝑀𝑀 → 𝑀𝑀�). It is accepted with 
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where 𝜙𝜙(. ) and 𝛷𝛷(. ) are the PDF and cumulative density function (CDF) of the standard normal 
distribution, respectively. Assume 𝛽𝛽|𝜎𝜎�� ∼ 𝑀𝑀𝑁𝑁��0, 𝜎𝜎��𝐼𝐼� and 𝜎𝜎�� ∼ 𝐼𝐼𝑛𝑛𝐼𝐼 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ���

�
, ����

�
� 

[32]. Then, the joint prior distribution is: 
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If the errors have a skew-normal distribution 𝜖𝜖 ∼ 𝑆𝑆𝑁𝑁(𝜇𝜇, 𝜎𝜎, 𝜆𝜆), the posterior distribution is 
obtained as: 
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The posterior distribution leads to estimate the model parameters. 

is an estimate of E(f(M)) as N→∞ [12]. To compute 
Equation 2 by this approach, set f(M)=Pr(Δ|M,D). To 
construct the Markov chain, for each M ϵ M, a neighbor-
hood nbd(M) is defined that includes the model M itself 
and the set of models with one edge more or fewer than 
M. Its transition matrix q is defined by setting q(M→M' 
)=0 for all M' ϵ nbd(M) and q(M→M')≠0, constant for all 
M'ϵnbd(M). If the chain is in state M, we access to state 
M' by considering q(M→M'). It is accepted with proba-
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The posterior distribution leads to estimate the model parameters. 

; otherwise, we do not move from 

state M [4].

Bayesian framework 

In this section, two linear models are presented whose 
errors follow some skew distributions. The first model is 
concerned with skew-normal error distribution and the 
second model considers the skew-t distribution. 

Errors with skew-normal distribution 

Let U has a skew-normal distribution with the shape 
parameter λ ϵ R, mean μ ϵ R, and standard deviation σ ϵ 
R+, denoted by SN(μ,σ,λ). The probability density func-
tion (PDF) of U is defined as Equation 11:
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The posterior distribution leads to estimate the model parameters. 

Azzalini and Capitanio [15] proposed a simple linear re-
gression model where the error terms are independent 
and identically distributed from SN(0,1,λ). Consider the 
model (Equation 12):
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If the errors have a skew-normal distribution 𝜖𝜖 ∼ 𝑆𝑆𝑁𝑁(𝜇𝜇, 𝜎𝜎, 𝜆𝜆), the posterior distribution is 
obtained as: 
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The posterior distribution leads to estimate the model parameters. 

where X is a n×(p+1) matrix that contains the observa-
tion of predictors, and ϵ=(ϵ1,...,ϵn)' and Y=(Y1,...,Yn)' are 
n×1 vectors of errors and dependent variable observa-
tion, respectively. Also, β is a (p+1)1 vector of coeffi-
cients. Let ϵi ~ SN(0,1,λ) and independent for i=1,..,n. 
The likelihood function for Equation 12 is written as 
Equation 13:

Figure 1. Occam’s window: Interpreting the posterior odds [20]
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The posterior distribution leads to estimate the model parameters. 
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The posterior distribution leads to estimate the model parameters. 
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The above formula provides more information about parameters and their estimates. 
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The above formula provides more information about parameters and their estimates. 
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The above formula provides more information about parameters and their estimates. 
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Let β have the p-variate t distribution with degrees of 
freedom rβ, mean vector μβ, and correlation matrix R, 
denoted by MVTrβ (μβ,R). Its PDF is obtained as:
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The above formula provides more information about parameters and their estimates. 
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Here, assume that rβ has a truncated t distribution 
with degrees of freedom r :
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The above formula provides more information about parameters and their estimates. 
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where I(.) is an indicator function, α0=T(b;r)-T(a;r) is a 
normalizing constant with -∞<a<b<∞ and denotes the 
CDF of the t distribution [19]. Then, the joint prior distri-
bution is defined:
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Here, assume that 𝑟𝑟� has a truncated t distribution with degrees of freedom r : 
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The above formula provides more information about parameters and their estimates. 

Numerical study  
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The above formula provides more information about parameters and their estimates. 

Numerical study  
The above formula provides more information about 

parameters and their estimates.

Numerical study 

In this study, we evaluated the performance of the 
BMA method for linear models with skew-normal and 
skew-t errors. This evaluation was carried out on both 
simulated and real data. To select the best model, Oc-
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cam’s window and MC3 method were used. The com-
putations were carried out in R software, version 4.4.0.

Results

Numerical study on simulated data

At first, to assess the performance of the BMA meth-
od, we simulated data from linear models with skew-
normal and skew-t distributed errors.

Case 1. We assess the effect of model averaging on 
prediction performance under a little model uncertain-
ty. We simulated 6 predictors for 100 observations from 
the standard normal distribution. We obtained the re-
sponse values using the following model (Equation 22):

22. 

𝑌𝑌 = 2.5𝑋𝑋� + 3𝑋𝑋� + 𝜖𝜖                  (22) 

where 𝜖𝜖 ∼ 𝑆𝑆𝑆𝑆���(0,1,2.8). Based on Occam’s window and MC3 method, we tried to find the 

 

 

𝑌𝑌 = 𝑋𝑋� + 3𝑋𝑋� + 𝜖𝜖   (23) 

 

where ϵ ~ SN100 (0, 1, 2.8). Based on Occam’s window 
and MC3 method, we tried to find the best model. The 
models the highest posterior probability are presented 
in Tables 1 and 2. For each model, the included indepen-
dent variables are specified. The posterior probability 
corresponds to the validity of each model when errors 
have skew-normal distribution. Based on Occam’s win-
dow, the best model was X6 (Table 1), while based on 

the MC3 method the models X4 and X5 were yielded as 
the best model (Table 2). Therefore, the MC3 method 
gives the true model (Equation 22). The models X4 and 
X5 proposed by the MC3 method had a probability value 
of 1, indicating the importance of these variables. 

Case 2. We simulated 6 predictors for observations 
from a standard normal distribution. The response val-
ues are obtained from the following model (Equation 
23):

23.

 

𝑌𝑌 = 2.5𝑋𝑋� + 3𝑋𝑋� + 𝜖𝜖                  (22) 

where 𝜖𝜖 ∼ 𝑆𝑆𝑆𝑆���(0,1,2.8). Based on Occam’s window and MC3 method, we tried to find the 

 

 

𝑌𝑌 = 𝑋𝑋� + 3𝑋𝑋� + 𝜖𝜖   (23) 

 where ϵ ~ ST100 (0,1,0,2). The results are shown in 
Tables 3 and 4. As can be seen, based on Occam’s win-
dow, the best model was according to its posterior prob-
ability value (Table 3), which is different from the true 
model (Equation 23). The MC3 method showed that 
the models X1 and X3 had the highest probability value 
(Table 4). Therefore, the MC3 method proposes the true 
model and outperforms Occam’s window. Overall, we 
can conclude that the MC3 method works better than 
Occam’s window and gives a high posterior probability 
to the best model.

Table 2. Proposed models by the MC3 method using errors with skew-normal distribution

Model X1 X2 X3 X4 X5 X6 Posterior Prob.

Model 1 . . . x x . 0.95242

Model 2 x . . x x . 0.01379

Model 3 . . x x x . 0.01139

Model 4 . . . x x x 0.01093

Model 5 . x . x x . 0.0106

Prob. 0.01427 0.01101 0.01182 1 1 0.01135

Table 1. Proposed models by Occam’s window using errors with skew-normal distribution

Model (Intercept) X1 X2 X3 X4 X5 X6 Posterior Prob.

Model 1 0.81960938 0 0 0 0 0 0.2832983 0.3982949

Model 2 0.9717074 0 0 0 0 1.28427 0 0.29508155

Model 3 0.839702 0 0.3628245 0 0 0 0 0.21900607

Model 4 0.6858804 0 0 0 2.532623 0.992962 0 0.08761748
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Numerical study on real data

Rice SNP-Seek Database was used to obtain real data. 
The data consists of information from 152 SNPs with 
6 phenotypes. It is interesting to study the relation-
ship between SNP (stock ID) and phenotypes CUST 
REPRO (culm strength at reproductive - cultivated), 
FLA EREPRO (flag leaf (attitude of the blade) - early ob-
servation), FLA REPRO (flag leaf angle at reproductive 
- cultivated), INCO REV REPRO (internode color at repro-
ductive - cultivated), LA (leaf angle - cultivated), LPCO 
REV POST (Lemma and palea color at post-harvest). 
Assuming that the errors had a skew-normal and skew-t 
distribution, the BMA method was employed to select 
the best model for the two cases mentioned in the pre-
vious section. The results related to the skew-normal 

distribution are presented in Tables 5 and 6. Tables 7 
and 8 show the results related to the skew-t distribu-
tion.

Occam’s window method selected CUST REPRO vari-
able in the best model under skew-normal and skew-t 
distributions (Tables 5 and 7). While the MC3 method 
showed that the best model contained FLA EREPRO 
and LA data when the errors had either skew-normal 
or skew-t distribution (Tables 6 and 8). Based on the 
posterior probability value, it is more plausible that 
the model proposed by the MC3 method was the true 
model. Figure 2 shows the best selected models by Oc-
cam’s window for errors with skew-normal and skew-t 
distributions. 

Table 3. Proposed models by Occam’s window with errors of skew-t distribution

Model Intercept X1 X2 X3 X4 X5 X6 Posterior Prob.

Model 1 -0.3376358 0 0 0 0.2681482 0 0 0.37422749

Model 2 -0.7483444 0 0 0 0 0 -1.583952 0.34998302

Model 3 -0.4365348 0 0.3415978 0 0 0 0 0.25071772

Model 4 0.1131875 0.9464601 0 3.15486 0 0 0 0.02507177

Table 4. Proposed models by the MC3 method with errors of skew-t distribution

X1 X2 X3 X4 X5 X6 Posterior Prob.

Model 1 x . x . . . 0.862463

Model 2 x . x x . . 0.059805

Model 3 x x x . . . 0.035765

Model 4 x . x . x . 0.026447

Model 5 x . x . . x 0.009513

Prob. 0.99997 0.03893 1 0.0642 0.02954 0.01089

Table 5. Proposed models by Occam’s window with errors of skew-normal distribution

Model Intercept CUST RE-
PRO

FLA ERE-
PRO

FLA RE-
PRO

INCO REV 
REPRO LA LPCO REV 

POST
Posterior 

Prob.

1 861.6935 -2.703353 0 0 0 0 0 0.29528369

2 878.1512 0 0 0 0 0 -1.035293 0.25229186

3 842.3443 0 0 0 0 0 0 0.2427935

4 807.809 0 0 23.82269 0 0 0 0.17048224

5 816.6185 0 0 0 0 7.766578 0 0.03914872
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Table 7. Proposed models by Occam’s window with errors of skew-t distribution

Model Intercept CUST 
REPRO

FLA ERE-
PRO

FLA 
REPRO

INCO REV 
REPRO LA LPCO REV 

POST
Posterior 

Prob.

1 1224.7252 -79.45173 0 0 0 0 0 0.32884106

2 49.76331 0 127.8966 0 0 72.2039 0 0.21450572

3 497.20629 0 0 0 0 0 3.274880 0.18093797

4 1932.2736 0 0 0 -353.8652 0 3.521777 0.16477813

5 276.26271 0 0 0 0 96.80784 0 0.09193572

6 753.78787 0 0 210.8991 -114.0071 0 1.989704 0.01900139

Table 6. Proposed models by the MC3 method with errors of skew-normal distribution

Model CUST REPRO FLA EREPRO FLA REPRO INCO REV 
REPRO LA LPCO REV 

POST Posterior Prob.

1 . x . . x . 0.76108

2 . x . . . . 0.10885

3 . . . . x . 0.02817

4 . . x . x . 0.02785

5 . x x . x . 0.01687

Prob. 0.022259 0.931855 0.060966 0.008972 0.86810 0.011920

Figure 2. Selected models by Occam’s window for errors with skew-normal (a) and skew-t (b) distributions 

Notes: The red color indicates that the estimated coefficient is positive, and the blue color shows a negative coefficient. White color indi-
cates the variables not included in the model.
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Discussion

In the context of Bayesian inference, selecting the 
best model is a critical challenge, particularly in situa-
tions with a multitude of potential predictors. The BMA 
method is a powerful approach to address this issue by 
effectively managing the uncertainties about the model 
and its parameters. This becomes more pivotal when 
one considers the vast number of possible linear mod-
els with countless predictors. The literature, including 
the work of Raftery et al., has shown the use of BMA 
in standard linear regression contexts, particularly when 
errors have normal distribution [20]. However, in many 
real-world scenarios, the errors may not have normal 
distribution, as many datasets exhibit skewness in the 
distribution of their errors. The adaptability of the BMA 
method to such complex scenarios is noteworthy, espe-
cially when it comes to identifying the most appropriate 
subset of predictors under these non-normal distribu-
tions, such as skew-normal and skew-t distributions. 
By employing the BMA method alongside techniques 
such as Occam’s Window and MC3, researchers are able 
to navigate the vast space of models and quantify and 
manage their uncertainties effectively. Occam’s window 
provides a streamlined approach to model selection 
by considering the simplicity principle, and MC3 allows 
for the extensive exploration of the model space, albeit 
with greater computational demands. Each method 
contributes distinctly to the model selection process, 
enabling researchers to weigh the trade-offs between 
computational efficiency and model accuracy. The in-
tegration of BMA with these techniques underscores 
the importance of identifying a single best model and 
recognizing the importance of multiple competing mod-
els within the context of uncertainty. This perspective is 
essential in biological and ecological studies where un-
derlying processes may be inherently complex and mul-
tifactorial. Overall, the use of BMA along with strategies 
that address the nuances of error distributions equips 

researchers with robust tools to draw more accurate 
inferences and predictions from their models, thereby 
enhancing the reliability of their biological insights. As 
the field continues to evolve, embracing such advanced 
methodologies will be vital for addressing the intricate 
challenges presented by biological data.

Conclusion

Based on the analysis of genetic data from 3000 rice 
varieties, this study highlights the effectiveness and ap-
plicability of two model selection methods (Occam’s 
Window and MC3) in understanding the relationship 
between genotype and phenotype. Although both 
methods are suitable for inference and prediction in 
biostatistical contexts, the MC3 method is more capa-
ble to identify the true model with greater accuracy, 
particularly when dealing with skew distributions. Al-
though Occam’s Window completes its computations 
more rapidly, it tends to rank lower in model accuracy 
compared to MC3.This suggests that researchers in the 
field of biology and genetics should consider using the 
MC3 method for complex genetic modeling, despite its 
longer computation time, since it provides more reliable 
insights into the underlying genetic factors influencing 
phenotypic variation in rice varieties. The findings em-
phasize the importance of employing robust modeling 
approaches in biological research to enhance our un-
derstanding of genetic diversity and its implications for 
crop improvement.
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Table 8. Proposed models by the MC3 method with errors of skew-t distribution

Model CUST REPRO FLA EREPRO FLA REPRO INCO REV REPRO LA LPCO REV POST Posterior Prob.

1 . x . . x . 0.7608

2 . x . . . . 0.10881

3 . . . . x . 0.02816

4 . . x . x . 0.02784

5 . x x . x . 0.01686

Prob. 0.022623 0.931704 0.061214 0.008979 0.86816 0.011874
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