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Background and Purpose: The increase in road traffic accidents (RTAs) due to urban and suburban 
expansion and rising vehicle numbers complicates mortality trend analysis. This study aims to 
compare RTA mortality rates in urban and suburban areas of Golestan Province, north of Iran, 
using time-series forecasting models.

Materials and Methods: This retrospective study examined all RTA data (n=37, 409) recorded by 
the emergency medical service system of Golestan Province from March 2021 to March 2023 for 
urban and suburban areas. We employed three forecasting models, including multiple logistic 
regression (MLR), autoregressive integrated moving average (ARIMA), and propensity score 
matching (PSM), within a time-series data framework, to evaluate their performance in predicting 
RTA mortality rates in urban and suburban areas and find the demographic factors predicting 
the mortality rates. We calculated the root mean square error (RMSE) and the mean absolute 
percentage error (MAPE) to evaluate the prediction accuracy of each model.

Results: The survival rate was 98.7% (n=36931) and only 1.3% (n=478) led to death. Over the 
two-year period, the RTA mortality rate was significantly higher in suburban areas (1.6%) than in 
urban areas (0.8%) (P=0.001). The PSM model outperformed other models with lower RMSE and 
MAPE for both urban and suburban areas. Age and oxygen saturation (SPO2) were the significant 
predictors of RTA mortality rate. 

Conclusion: The RTA mortality rate is higher in suburban areas of Golestan Province than in its 
urban areas. The PSM model provides higher prediction accuracy than the RTA and MLR models 
for both urban and suburban areas.
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Introduction 

oad traffic accidents (RTAs) are a major 
global health challenge, accounting for ap-
proximately 1.19-1.3 million deaths each 
year. Alarmingly, 93% of these deaths oc-
cur in low- and middle-income countries, 

even though these countries own only 60% of the 
world’s vehicles [1-6]. Iran is among the countries with 
a high mortality rate from RTAs, with nearly 16,000 lives 
lost annually. The accidents are especially prevalent in 
high-traffic areas of the country, like the roads of north-
ern provinces, where poor road conditions, frequent 
traffic violations, and insufficient law enforcement ex-
acerbate the incidence of RTAs [6-8]. The consequences 
of these accidents, in addition to death, include physical 
disabilities, emotional trauma, and financial burdens on 
families and the healthcare system [7-12]. Contributing 
factors include human error (e.g. exceeding speed), ve-
hicle defects, inadequate infrastructure, and environ-
mental hazards [13-17]. 

While prior studies have examined risk factors and 
policies for RTAs, critical gaps still remain, including a 
lack of comparative urban-suburban analyses [5-15] 
and insufficient attention to temporal trends [18-22]. A 
comparative analysis of RTAs and related mortality rates 
between urban and suburban areas provides essential 
insights into disparities in risk factors, infrastructural 
challenges, and policy requirements. However, most 
studies rely on cross-sectional data, missing seasonal 
variations and long-term patterns that can enhance ef-
forts to prevent accidents [7-10, 21-25]. Time-series 
data, though underutilized, offers valuable predictive 
insights into accident dynamics [21-29]. For instance, 
urban areas may experience peak RTAs during rush 
hours due to congestion, whereas suburban fatalities 
might surge on weekends or holidays as a result of high-
speed driving. Forecasting models can predict these 
fluctuations, enabling tailored traffic control measures 
for each setting. Similarly, suburban roads, which are of-
ten less maintained than urban roads, may see a higher 
RTA-related mortality rate during adverse weather con-
ditions such as rainy or snowy days. Additionally, urban 
and suburban expansion may alter accident rates over 
time. Forecasting models can help planners to antici-
pate future risks and optimize infrastructure develop-
ment before the occurrence of accidents. However, few 
studies have used advanced forecasting methods such 
as multiple logistic regression (MLR), the autoregressive 
integrated moving average (ARIMA), and propensity 

score matching (PSM) models [29-31] to analyze urban 
and suburban RTA trends closely. 

This study addresses these gaps by analyzing tempo-
ral trends of RTAs in Golestan Province, north of Iran, 
providing evidence for better traffic management and 
emergency response. This study aims to explore vari-
ous aspects of RTA mortality rates resulting in urban 
and suburban areas of the province using MLR, ARIMA, 
and PSM forecasting models. The MLR model is useful 
for studying how confounding factors relate to a binary 
response variable, such as mortality across urban and 
suburban areas. The ARIMA model provides insights 
into temporal trends and patterns of mortality across 
urban and suburban regions. We also employed the 
semi-parametric PSM method to identify comparable 
features between urban and suburban areas. This in-
volves distinguishing groups based on their propensity 
score (PS), which are defined as random effects within 
a mixed-effects model. The novelty of this study is the 
integration of PSM with a time-series data framework, 
offering a fresh perspective on forecasting RTA mor-
tality rates across urban and suburban areas. The key 
questions are: What are the differences in RTA mortality 
rates between urban and suburban areas? How can the 
proposed forecasting models help in decision-making 
for staffing in emergency response centers in urban 
and suburban areas? Which model is more effective for 
forecasting RTA mortality rates in these areas? 

Materials and Methods

Study design and data

This retrospective cohort study was carried out using 
the RTA data (n=37,409) reported by Emergency Medi-
cal Services (EMS 115) from March 2021 to March 2023 
in Golestan Province, located in northeast Iran. The 
inclusion criteria were cases such as RTAs injuries that 
need medical care, fatalities at the scene, dangerous sit-
uations, and mass casualty events. On the other hand, 
the exclusion criteria were the cases that are usually not 
recorded by the EMS 115, such as minor accidents with-
out injuries, medical emergencies not related to traffic, 
non-urgent transportation, and incidents not occurring 
on the road.

This study measured multiple factors related to RTA 
scenarios, including age and gender of the individual in-
volved in the accident, the duration between the ambu-
lance being dispatch and its arrival at the scene (D1), the 
duration between receiving the message and the ambu-
lance’s arrival at the treatment center (D2), peripheral 
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oxygen saturation level (SPO2) at the time of accident, 
location of accident (urban or suburban area), year of 
accident (from March 2021 to March 2023), month of 
accident, and time of accident (daytime or nighttime). 
Descriptive statistical methods were utilized to summa-
rize the data, including calculations of Mean±SD. 

Forecasting methods

We used forecasting models MLR, ARIMA, and PSM 
within a time-series data framework. Although MLR 
and PSM are not conventionally standard models for 
time-series forecasting, they can be effectively applied 
to analyze the time-series data. The ARIMA model ex-
cels in forecasting continuous time series, while the 
MLR model is suited for classification tasks. The choice 
depends on whether the focus is prediction of values 
(ARIMA) or probabilities (MLR) and how well tempo-
ral dependencies are handled. For rigorous time-series 
classification, extending MLR with autoregressive terms 
or PSM model may be necessary, because, the MLR 
method may involve the inclusion of lagged variables to 
tackle autocorrelation by accounting for the temporal 
structure [29-31]. Regarding the PSM model, it is essen-
tial to consider time-related confounding factors such 
as age, SPO2, and gender; and also, potentially match 
within time strata or employ time-dependent covariates 
[31]. We apply these three different models to our da-
taset and assess their performance using the root mean 
square error (RMSE) and the mean absolute percentage 
error (MAPE) criteria [22]. These two errors criteria are 
calculated as Equations 1 and 2: 

1. 
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 are the observed and predicted val-
ues, respectively, for all time t, n is the total number of 
observations and k is the samples size (k<n). Further-
more, the auto-correlation functions of the residuals for 
diagnostic testing were conducted. 

ARIMA model

ARIMA is a popular time-series model designed for 
forecasting using historical data. It extends the ARMA 
model by including differencing, making it suitable for 
non-stationary data. If no differencing is needed (d=0), 
ARIMA reduces to ARMA. While ARMA works spe-
cifically with stationary time series, ARIMA is tailored 

for handling non-stationary ones. This model helps 
to identify and forecast trends over time, providing a 
temporal context that is crucial for understanding how 
urban/suburban area development and increased ve-
hicle numbers affect RTA rates. By applying the ARIMA 
model, researchers analyze temporal patterns, which 
are crucial for understanding the influence of the two 
above-mentioned factors on RTA rates over time. Con-
ducting residual diagnostics is crucial for evaluating the 
validity of the ARIMA model, ensuring that the residu-
als exhibit independence. For this purpose, the Ljung-
box portmanteau test was utilized to assess the ade-
quacy of the fitted ARIMA model. This statistical test is 
based on the autocorrelation of the squared residuals. 
The Ljung-box portmanteau test statistic is calculated 
as Equation 3: 
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, 

where n is the total number of observations, h is the 
number of lags to include in the test, and rk indicates 
the sample autocorrelation coefficients at lag k. The test 
statistic Q follows a chi-square distribution with h-w 
degrees of freedom where h is the number of lags the 
test is computed for and w is the number of parameters 
used in fitting the model. Our data consists of infor-
mation spanning two years. This data is regarded as a 
sample, and the calculated rk at different lags (k=1, 2, …, 
h) represents the sample autocorrelation of the residu-
als. The range of their variation is (-1, 1). To perform the 
Ljung-box test, we first determine the sample autocor-
relations rk for the specified lags up to h. We assess the 
P; if the P>0.05, it confirms the null hypothesis, indicat-
ing that the residuals do not have significant autocor-
relation and that the ARIMA model is appropriate. In 
contrast, if the P<0.05, we reject the null hypothesis, 
suggesting that significant autocorrelation exists in the 
residuals, and the ARIMA model is inappropriate. 

The Ljung-box portmanteau test results of our study 
revealed that the residuals from our fitted ARIMA 
model do not exhibit significant autocorrelation, sup-
porting the model’s adequacy for the time-series data. 
They follow an ARIMA (p, d, q) model, where p repre-
sents the Autoregressive order, d denotes the number 
of differencing steps applied to the data to achieve sta-
tionarity, and q signifies the Moving Average order. Our 
dataset was non-stationary. By applying a single time 
difference (d=1), we transformed it into stationary data. 
Subsequently, we generated plots for the autocorrela-
tion function and the partial autocorrelation function 
to determine the suitable orders p and q. Consequent-
ly, we concluded that our data was well-suited for the 
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ARIMA (1, 1, 1) model. Finaly, differentiating the autore-
gressive moving average model (ARIMA) (1, 1, 1) using 
the Ljung-box test, it was significant (P>0.05). The key 
advantage of the Ljung-box test is that it helps assess 
whether the model has adequately captured the struc-
ture of the data or whether significant patterns remain 
unexplained. 

MLR model 

The MLR model analyzes the impact of multiple inde-
pendent variables on a binary outcome (e.g. accident 
outcome such as survival/death), allowing researchers 
to control for confounding factors. This approach can 
be adjusted for time-series analysis, particularly when 
the outcome is binary and time-dependent, and the 
predictors involve lagged variables [29]. The model is 
described as Equation 4: 

4. Logit P(Yt =1)=β0+β1Xt+Ԑt

Where Yt is the actual observed response variable 
(death or survival), Xt is the set of explanatory variables, 
and Ԑt is the error term at time t. 

PSM method

PSM is a semi-parametric approach that matches 
groups with similar attributes, enabling a more accurate 
prediction of RTAs. This method distinguishes between 

urban and suburban areas based on their PS, which are 
treated as random effects in a mixed-effects model. By 
identifying and matching similar characteristics among 
different groups, this method aims to reduce selection 
bias and enhance the validity of comparisons. This es-
timation technique allows for the examination of data 
over time (longitudinal data setting), which is impor-
tant for capturing changes in RTA rates relative to urban 
growth and policy changes. This innovative combination 
allows for a more nuanced understanding of the factors 
influencing RTAs, facilitating comparisons across differ-
ent urban and suburban contexts. In such instances, it 
is essential to ensure that the distribution of covariates 
such as SPO2 is balanced at each time point. 

We used the PS derived from the Cox proportional haz-
ards model, which is employed in risk set matching. We 
employed the PS to predict RTA mortality rates. The out-
come was binary; 1 (death) or 0 (survival), determined 
by factors including D1, D2, age, gender, SPO2, location 
(urban, suburban), year, month, and time factors. Logis-
tic regression was employed, and the nearest neighbor 
matching technique was applied in this context [31]. 
Then, individuals were matched to assess mortality risks 
among comparable risk profiles (e.g. high-SPO2 vs low-
SPO2 groups). In the regression model, the variable was 
considered 0 or 1 (survival or death), while other factors 
were confounding factors. Our analysis demonstrated 
that matching based on the PS successfully achieved a 

Table 1. Number of RTA patients (survived or dead) from March 2021 to March 2023 based on confounding factors

Confounders
No. (%)/Mean±SD

P
Survived (n=36931) Death (n=478)

Gender
Male 28827(98.7) 392(1.3)

0.038
Female 8104(98.9) 86(1.1)

Arrival time
Day (6 AM–6 PM) 20618(98.9) 238(1.1)

0.008
Night (6 PM–6 AM) 16313(98.6) 240(1.4)

Accident area
Urban 15151(99.2) 127(0.8)

2×10-5

Suburban 21780(98.4) 351(1.6)

Age 30.01±15.98 40.67±20.72 4×10-7

SPO2 level 97.74±3.29 72.1±36.87 5×10-5

D1 (hour: minute) 10:47±19:02 09:55±07:21 0.327

D2 (hour: minute) 41:01±23:36 35:36±21:45 0.842

Note: When time, measured in minutes, is treated as a quantitative variable within our dataset, analyzing the central tendency becomes 
important. This process becomes even more meaningful when examined in conjunction with the Mean±SD.
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balanced distribution of covariates between individuals 
who died and those who survived after RTAs. 

Data analysis

The statistical analysis was carried out in R software, 
version 4.5.0. To evaluate differences in demographic 
characteristics and RTA injuries between urban and 
suburban areas, independent t-test was employed, 
while the chi-square test was used to examine differ-
ence in categorical variables. P<0.05 was considered 
statistically significant. 

Results

This study analyzed 37,409 records of RTAs collected 
from March 2021 to March 2023. As shown in Table 1, 
the survival rate was 98.7% (n=36931) and only 1.3% 
(n=478) led to death. The mortality rate of RTAs oc-
curred in suburban areas was twice the rate in urban 
areas (1.6% vs 0.8%). The accidents happened more at 
daytime, while the mortality rate was higher for RTAs 
occurred at nighttime (P=0.008). Also, most of accidents 
occurred in suburban areas than in urban areas. The age 
of deceased individuals was significantly higher than 
that of survivors, while their mean SPO2 level was lower 
than that of survivors. Moreover, there was a statisti-
cally significant difference between men and women 
(P=0.038), where men experienced more RTAs com-
pared to women. 

The results of MLR before PSM presented in Table 2 
indicated the statistically significant association of RTA 

mortality rate with age, gender, D2, SPO2 level, location, 
month, and the time of the accident (daytime vs. night-
time) (P<0.05). Additionally, the analysis reveals that a 
decrease in SPO2 is associated with a 35% increase in 
the risk of RTA mortality. Furthermore, males have 37% 
lower odds of RTA mortality rate compared to females 
(OR=0.63, 95% CI, 0.46%, 0.87%). Location of accident 
predicted a change by 2.08 units in RTA mortality rate 
(OR=2.08, 95% CI, 1.57%, 2.77%). The year of accident 
predicted the risk of RTA mortality rate by 46%. The 
time of accidents predicted the risk of RTA mortality rate 
by 1.34 units.

The standard error (SE) in the estimated effect size 
(log-odds coefficients) for all covariates can be derived 
from the ORs at 95% CI as Equation 5:

5. 

0.072 (1.00,1.00) 1.00 -2 10  D2 
0.000 (0.92,2.01) 1.35 0.30 SPO2 
0.000 (1.57,2.77) 2.08 0.73 Location 
0.139 (0.88,2.42) 1.46 0.38 Year 
0.022 (0.92,0.99) 0.96 -0.04 Month 
0.018 (1.05,1.72) 1.34 0.230 Time 

 

The results of MLR before PSM presented in Table 2 indicated the statistically significant 
association of RTA mortality rate with age, gender, D2, SPO2 level, location, month, and the 
time of the accident (daytime vs. nighttime) (P<0.05). Additionally, the analysis reveals that a 
decrease in SPO2 is associated with a 35% increase in the risk of RTA mortality. Furthermore, 
males have 37% lower odds of RTA mortality rate compared to females (OR = 0.63, 95% CI: 
0.46–0.87). Location of accident predicted a change by 2.08 units in RTA mortality rate 
(OR=2.08, 95% CI: 1.57- 2.77). The year of accident predicted the risk of RTA mortality rate 
by 46%. The time of accidents predicted the risk of RTA mortality rate by 1.34 units. 
The standard error (SE) in the estimated effect size (log-odds coefficients) for all covariates 
can be derived from the ORs at 95% confidence interval (CI) as follows: 

SE =     
.  

 
Table 3. The results of PSM before and after matching 

Before matching for all data 

 Mean,  
Survived 

Mean, 
Dead Std. Mean Diff. Var. Ratio eCDF Mean eCDF Max 

Distance 0.0227 0.0125 0.5161 3.4733 0.1569 0.2871 
Age 40.8122 30.0094 0.5208 1.6851 0.1162 0.2463 

Gender 1.1667 1.2194 -0.1414 0.8126 0.0264 0.0527 
Location 1.7278 1.5899 0.3097 0.8205 0.0690 0.1380 

Time 1.4831 1.4252 0.1159 1.0239 0.0290 0.0580 
For matched data 

 Mean, 
 Survived 

Mean,  
Dead Std. Mean Diff. Var. Ratio eCDF Mean eCDF Max 

Distance 0.0227 0.0226 0.0006 1.0057 0.0000 0.0021 
Age 40.8122 40.7068 0.0051 1.0196 0.0011 0.0063 

Gender 1.1667 1.1646 0.0057 1.0103 0.0011 0.0021 
Location 1.7278 1.7300 -0.0047 1.0049 0.0011 0.0021 

Time 1.4831 1.4873 -0.0084 0.9995 0.0021 0.0042 
eCDF: ???? 

We used the PSM method to analyze RTA data while adjusting for four non-modifiable 
confounders, which were selected since the emergency center was unable to modify them and 
also due to their significant baseline differences (P< 0.05). Table 3 shows the PSM results for 
the distance (convergence metric) and confounders between the death and survival groups 
before and after successful matching. The mean values for distance and confounders showed 
improved balance and a substantial reduction in the standardized mean difference (from 0.52 
for the total dataset to 6×10  in the matched dataset), confirming the algorithm’s effectiveness 
in matching of the characteristics of the two groups. This approach in fact allows for a more 
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We used the PSM method to analyze RTA data while 
adjusting for four non-modifiable confounders, which 
were selected since the emergency center was unable 
to modify them and also due to their significant base-
line differences (P<0.05). Table 3 shows the PSM results 
for the distance (convergence metric) and confounders 
between the death and survival groups before and after 
successful matching. The mean values for distance and 
confounders showed improved balance and a substan-
tial reduction in the standardized mean difference (from 
0.52 for the total dataset to 6×10-4 in the matched datas-
et), confirming the algorithm’s effectiveness in matching 
of the characteristics of the two groups. This approach 

Table 2. The MLR coefficients and odds ratios before matching

P95% CIAdjusted ORCoefficientConfounders

0.139-5×10-24-53.56Constant

0.000(1.04, 1.05)1.050.05Age

0.005(0.46, 0.87)0.63-0.46Gender

0.159(0.99, 1)1-3×10-6D1

0.072(1, 1)1-2×10-7D2

0.000(0.92, 2.01)1.350.3SPO2

0.000(1.57, 2.77)2.080.73Location

0.139(0.88, 2.42)1.460.38Year

0.022(0.92, 0.99)0.96-0.04Month

0.018(1.05, 1.72)1.340.23Time
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in fact allows for a more equitable comparison by pair-
ing patients with similar characteristics, thereby mini-
mizing biases that could affect the mortality [30, 31]. It 

should be noted that, the nearest neighbor matching 
technique was utilized to create a balanced comparison 
between two groups. 

Table 3. The results of PSM before and after matching

Variables

Before Matching for All Data

Mean
Var. Ratio eCDF Mean eCDF Max

Survived Dead Std. Diff.

Distance 0.0227 0.0125 0.5161 3.4733 0.1569 0.2871

Age 40.8122 30.0094 0.5208 1.6851 0.1162 0.2463

Gender 1.1667 1.2194 -0.1414 0.8126 0.0264 0.0527

Location 1.7278 1.5899 0.3097 0.8205 0.069 0.138

Time 1.4831 1.4252 0.1159 1.0239 0.029 0.058

Variables

For Matched Data

Mean
Var. Ratio eCDF Mean eCDF Max

Survived Dead Std. Diff.

Distance 0.0227 0.0226 0.0006 1.0057 0 0.0021

Age 40.8122 40.7068 0.0051 1.0196 0.0011 0.0063

Gender 1.1667 1.1646 0.0057 1.0103 0.0011 0.0021

Location 1.7278 1.73 -0.0047 1.0049 0.0011 0.0021

Time 1.4831 1.4873 -0.0084 0.9995 0.0021 0.0042

Note: The eCDF outlines the degree of compliance, which reflects the overall tendency.

Table 4. The MLR coefficients and odds ratios after matching

P95% CIORCoefficientConfounders 

0.87-2×10-1376.54Constant

0.05(1, 1.02)1.010.01Age

0.83(0.61, 1.48)0.950.05Gender

0.68(1, 1)1-5×10-8D1

0.09(1, 1)1-1.4×10-9D2

0.00(0.96, 1.53)1.210.19SPO2

0.24(0.55, 1.16)0.8-0.22Location

0.89(0.48, 1.89)0.96-0.04Year

0.34(0.61, 1.19)0.85-0.16Month

0.92(0.95, 1.05)10.003Time
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Table 4 shows the MLR coefficients and adjusted ORs 
after PSM. This analysis entails modeling the probability 
that an individual involved in accidents may belong to 
one group as opposed to another, based on the con-
founding factors. The results revealed that SPO2 and age 
were the only significant factors, with SPO2 being the 
most significant predictor of RTA mortality.

Table 5 shows the RMSE and MAPE values of the fore-
casting models MLR, ARIMA, and PSM for urban and 
suburban areas. The ARIMA and PSM models demon-
strate higher predictive accuracy compared to the MLR 
model, since they had lower RMSE and MAPE values. 
The selection of confounding factors has a direct im-
pact on these metrics, as omitting essential predictors 
results in underfitting, which subsequently increases 
RMSE and MAPE due to systematic bias. On the other 
hand, the inclusion of irrelevant confounders may lead 
to overfitting, which can reduce in-sample results but 
deteriorate out-sample results. Covariate balance as-
sessments indicate whether the matching process has 
enhanced the predictive fairness of the PS. This, in turn, 
provides indirect insights into RMSE and MAPE if bal-
ance is successfully achieved. 

The lowest RMSE recorded in both urban (5.12) and 
suburban (6.79) areas for the PSM indicates that the 
PSM exhibits the smallest prediction errors. On aver-
age, its mortality rate predictions deviate by 5–7 units 
from the actual values, which is considerably more ac-
curate than the MLR/ARIMA models. The ARIMA model 
had an RMSE of 15.26 for urban areas and 14.75 for 
suburban areas, suggesting a moderate level of accu-
racy. In contrast, the MLR model had a higher RMSE of 
32.76 in urban settings and 25.13 in suburban settings, 
indicating the worst performance among the models 
evaluated. These results suggest that PSM more effec-
tively captures the predictors of RTA mortality rates, 
while the high errors of the MLR indicate an inadequate 
fit. Additionally, the data presented in Table 5 indicated 
that all models exhibited higher RMSEs in urban areas, 
implying that RTA mortality rate is more difficult to pre-
dict in urban areas, potentially due to the complexities 
of traffic dynamics.

Figure 1 illustrates the total number of RTA survivors 
in suburban and rural areas from March 2021 to March 
2023. As can be seen, the number of survivors was low-
er in urban areas compared to suburban areas, due to 
a lower incidence rate. Due to the inherent characteris-

Table 5. RMSE and MAPE values of forecasting models for urban and suburban areas 

UrbanSuburban
Models

MAPE (%)RMSEMAPE (%)RMSE

15.5825.1318.5832.76MLR

9.2914.7510.7915.26ARIMA

3.426.794.425.12PSM
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Figure 1. Total number of RTA survivors in suburban vs urban areas from March 2021 to March 2023
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tics of suburban driving conditions, which can include 
higher driving speeds, less traffic control, and greater 
distances from emergency services, suburban areas are 
at higher risk of RTAs. Factors associated with crashes 
can also be effective, including road conditions, visibil-
ity, and the availability of immediate medical assistance 
following an accident. Overall, while both suburban and 
urban areas experience RTAs, the degree and context of 

these accidents differ, leading to variations in survival 
rate. Figure 2 plots the total number of RTA mortalities 
in suburban and rural areas from March 2021 to March 
2023. Over the two-year period, suburban areas expe-
rienced a higher number of mortalities from RTAs com-
pared to urban areas. 
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Figure 2. Total number of RTA mortalities in suburban vs. urban areas from March 2021 to March 2023

Figure 3. The average time for the EMS ambulance to arrive at the scene on a daily basis from March 2021 to March 2023

UCI: Upper-bound confidence interval; LCL: Lower-bound confidence interval.

Note: The red lines represent the actual observed data, while the blue lines indicate the predicted data.
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Figure 3 illustrates the daily average time for the EMS 
ambulance to arrive at the scene from March 2021 to 
March 2023 (700 days). The higher times observed in 
Figure 3 show critical cases when the EMS ambulance 
arrives late at the scene. By exploring the various factors 
that contribute to these delays and conducting a thor-
ough analysis, authorities should implement effective 
measures to improve emergency response time and en-
sure better outcomes for RTAs. 

Discussion

This study aimed to compare mortality rates of RTAs 
between urban and suburban areas in Golestan Prov-
ince, north of Iran, using time-series data and forecast-
ing models MLR, ARIMA, and PSM, which have not 
been previously addressed. Our findings revealed that 
the mortality rate was significantly higher in suburban 
areas (1.6%) compared to urban areas (0.8%), indicating 
a twofold increased risk of death in suburban areas. Key 
factors contributing to this result may be longer emer-
gency response times, reduced access to healthcare 
facilities, and differences in road infrastructure and traf-
fic conditions in suburban areas. Previous studies have 
indicated that delayed medical intervention worsens 
trauma outcomes [4, 5]. Studies in other parts of Iran 
have also reported increased RTA mortality in rural or 
suburban areas due to longer travel times to hospitals 
[8, 9]. The EMS ambulances take longer time to arrive 
at the accident scene in suburban areas, increasing the 
risk of death for critically injured individuals, particularly 
those with low SPO2. 

The urban areas exhibited lower RTA mortality rates, 
maybe due to higher traffic density leading to slower 
speeds and less severe collisions, as well as better ac-
cess to trauma care. This result is consistent with results 
of studies demonstrated that urban RTAs often involve 
low-speed impacts, resulting in non-fatal injuries [5, 
21] (e.g. whiplash or minor fractures) rather than life-
threatening trauma. This aligns with the speed-fatality 
gradient well-documented in road safety literature, 
where higher speeds exponentially increase the risk of 
fatal outcomes. Additionally, stricter traffic laws in cit-
ies (e.g. speed limits, pedestrian crossings, and traffic 
calming measures), may contribute to lower accident 
severity. Differences in road infrastructure and vehicle 
types may also have a role. Conversely, suburban roads 
often have higher speed limits and fewer safety mea-
sures, increasing the likelihood of severe crashes. Previ-
ous research has highlighted that high-speed collisions 
in less regulated areas significantly elevate fatality risks 
[7, 12]. Our use of PSM helped control for confounding 

variables, strengthened the validity of these compari-
sons [31], confirming that suburban accidents involve 
higher-risk conditions (e.g. uncontrolled intersections, 
poor lighting, and delayed EMS ambulance access). A 
study reported that the incidence of RTAs during the 
summer months was nearly twice that in other sea-
sons. Their results revealed a greater number of male 
victims with lower average age compared to females. 
Additionally, the study indicated a mortality rate of ap-
proximately 1.4% in Golestan Province [7]. Consistent 
with these results, we found an RTA mortality rate of 
1.3%. Furthermore, our findings showed that the aver-
age age of male patients was less than that of female 
patients, and the number of male patients was higher. 
Notably, in our two study areas, a gender difference 
was evident; in suburban regions, the number of male 
victims (59.2%) was more than that of female victims 
(58.9%), while in urban areas, females (41.1%) were 
more than males (40.8%). 

Deretić et al. [22] utilized the seasonal ARIMA model 
(SARIMA) for forecasting of traffic accidents and showed 
a notable seasonal trend using the time-series data. The 
model had an MAPE of 5.22%, which implies that the 
forecasts generated by the model were sufficiently ac-
curate. The authors explained that an MAPE<10% is 
indicative of highly accurate predictions, 10-20% sug-
gests good forecasting, 20-50% represents reasonable 
forecasting, and >50% shows inaccurate forecasting. In 
our study, the findings demonstrated that the predic-
tion of RTA mortality rates by the PSM model was highly 
accurate in both urban and suburban areas, based on 
the MAPE value.

Mohammadi [19] revealed that 66% of the injuries 
involved car occupants, including both drivers and pas-
sengers, with a male-to-female ratio of 5:1. The most 
pronounced male-to-female ratio was observed among 
drivers (12.2:1), whereas pedestrians exhibited the 
lowest ratio (1.8:1). The majority of injuries occurred 
16:00 and 20:00, followed by the period from 08:00 
AM to 12:00 PM. The highest incidence of injuries was 
recorded among males aged 18-24 years. In our study, 
in suburban areas, a higher number of RTAs occurred 
at daytime more than at night, while urban areas ex-
perienced a higher number of accidents at night. This 
trend can be due to several key factors. Suburban roads 
often serve as connectors for commuters, commercial 
transport, and school-related travel, leading to higher 
traffic volumes during daylight hours. Also, there are 
usually fewer late-night or shift workers and entertain-
ment centers in suburban areas, reducing nighttime traf-
fic. In urban areas, there are vibrant nightlife, extended 
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business hours, and shift work (e.g. healthcare work), 
increasing nighttime traffic density. 

Conclusion

Our findings showed the RTA forecasting performance 
of ARIMA and PSM models, with PSM proving higher ac-
curacy for both urban and suburban areas. The results 
highlight the promise of data-driven modeling. The RTA 
mortality rate is higher in suburban areas of Golestan 
Province than in its urban areas. This difference indi-
cates the need for deeper exploration of region-specific 
factors, including emergency service coverage, road in-
frastructure, and socioeconomic elements, which may 
not be captured by the forecasting models. Future re-
search should benefit from incorporating spatial ana-
lytics or hybrid modeling approaches to better under-
stand these disparities. 

Study limitations

This study had some limitations and disadvantages. 
First, varying service quality across health centers may 
have led to inconsistent medical reporting. To mitigate 
this, future studies should employ standardized trauma 
registries or accredited emergency departments, with 
sensitivity analyses to assess and exclude lower-quality 
health centers. Second, integrating diverse data sources 
(e.g. traffic patterns, accident reports) was challenging 
due to inconsistent formats and referencing systems. 
Adopting interoperable data standards, automated 
cleaning tools, and their testing in pilot studies can im-
prove integration. Third, the underreporting of minor 
traffic injuries (often due to the absence of medical 
treatment) may have led to selection bias. Supplement-
ing hospital data with community surveys or law en-
forcement records, along with statistical methods such 
as capture-recapture analysis, can address this issue. A 
prospective study with standardized protocols can fur-
ther enhance data consistency.
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