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Original Article 

Abstract 
 

    Background and purpose: In many area of medical research, a relation analysis between one 

response variable and some explanatory variables is desirable.  Regression is the most common tool in 

this situation. If we have some assumptions for such normality for response variable, we could use it. In 

this paper we propose a nonparametric regression that does not have normality assumption for response 

variable and we focus on longitudinal data. 
 

    Materials and Methods: Consider nonparametric estimation in a varying coefficient model with 

repeated measurements ( tijXijYij
,, ), for i=1, …, n and  j =1 ,… , ni where Xij=

T
XijkXijo

),...,(  and  

( tijXijYij
,, ) denote the jth outcome , covariate and time design points, respectively , of the ith subject. 

The model considered here is )()( tijitijY
T

ijYij
  , where 0,))(),...,(0()(  kfor

T
t

k
tt  , are 

smooth nonparametric functions of interest and )(t
i is a zero-mean stochastic process. The 

measurements are assumed to be independent for different subjects but can be correlated at different 

time points within each subject. For evaluating this model, we use data of a cohort of 289 healthy 

infants born in Shiraz in 2007. The proposed nonparametric regression was fitted to them for obtaining 

effect rates of mother weight, mother arm circumference and maternal age at delivery time and maternal 

age at first menarche on boy’s arm circumference. 
 

 

    Results: proposed nonparametric regression showed the varied effect of each independent variable 

over the time but other models achieved constant effect over the time that is in controversy with the 

inherent property of these natural phenomena. 
 
 

   Conclusion: This study shows that this model and the spline nonparametric estimator could 

be useful in different areas of medical and health studies.  
 

[Tabesh H. *Saki A. Mardaniyan S. A New Nonparametric Regression for Longitudinal Data. IJHS 

2013;1(3):58-70] http://jhs.mazums.ac.ir 
    
Key words: Cohort Studies, Longitudinal Data, Nonparametric Regression, Spline Smoothing.  
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1. Introduction 

With the increasing and developing of long-term cohort studies and clinical trial in the last 

three decades, importance of assessing the existing relationship that may be time-dependent 

will be appeared(1). For example, determination of short-term and long-term effects of 

zidovudine on CD4 cells (Repeated examination has been used in control and treatment groups 

in people who suffer from HIV) required to making statistical cost-benefit decision which 

whether the study should be continued or stopped(2). As another example, Modeling of the 

time effects to quantitative variables in children's anthropometric dimensions measurements 

could lead to a class of information about the effects of some factors on growth of children , 

also it could determine the effects of clinical interventions(3-4).So we can expect further 

progresses in the field of medical and biological studies to be done in line with cohort dataset. 

Although there are some statistical tools for analysis of these data but each of them have a 

limitations(5-6). For example, generalized additive semi-parametric models can be fitted to 

correlated data of cohorts with using existing software. Although such models can obtained 

consistent estimates for )(0 t  and )(0 t   

 when       tX i
tttX i

tYi
)(0)(0   (7). 

 But deselect of correct model for 
)(0 t
 and )(0 t  may lead to bias(2). Therefore, it seems to be 

required a nonparametric method for modeling )(0 t and )(0 t . Regarding to importance of 

longitudinal studies and the ability of nonparametric methods for analysis of such data, analysis 

of longitudinal data seems interesting by using nonparametric regression models (8-10).  In 

many longitudinal studies, repeated measurements are done for response variable at different 

and irregular time points. Suppose in a longitudinal study y(t) is the actual amount of the 

desired outcome and x (t) is a covariate vector Rk+1 - observed value at time t (k0). Also 

consider we have  n  subjects,  for i
th

  person ni ≥ 1 carried out the repeated measures over 

time from  ttXtY ),(),( .The j
th

 observation from  ttXtY ),(),(  for i
th

 subject is specified by 

 ijijij tXY ,,  for ni ,...,1 and inj ,...,1  where 1k

ij RX  is determined by the T

ijkijij XXX ),...,(

column vector. In the classical linear models framework, methods and theory of regression 

have been used for repeated observations in several studies(7). Methods such as weighted least 

squares , maximum likelihood ratio , limited maximum likelihood ratio or generalized linear 

models which used the quasi-likelihood method ,they are all examples of parametric methods 

that may be encountered the following problems when we used them: 

1. Inaccuracy or inadequacy of model assumptions, 

2.Inherent mistakes in the choice of models for data analysis. Due to these two 

reasons, using non-parametric methods are discussed(11).  
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Since easily understanding of regression methods many researchers are wishing to analyze their 

data by using regression methods, but the fundamental assumption in the regression methods is 

normality distribution of response variable. If the variable is not normal or does not hold the 

other assumptions of parametric regression model, with slight loss of efficiency and accuracy, 

nonparametric method could be used in order to obtain a model such as )()( ijiijijij ttXY   . 

However, most researchers that have been done so far, have considered constant coefficients 

for predictor variables that makes a distance between fitted values and actual values of response 

variable. But where the coefficients were considered as functions of time, stochastic processes 

were used, which were required very long computational steps(12,13). In the present study, we 

try to find a solution to get the time varying coefficients in regression model which requires no 

complex calculation and its interpretation is easily possible. 

 

2. Materials and Methods 

In section 2-1 exposing with real longitudinal data showed and later after introducing proposed 

nonparametric regression, the application of this new method to the real data of section 2-1 is 

given.     

2.1. Sampling and Participants 

A cohort of 287 neonates (139 girls and 148 boys) were selected randomly among those born 

during July 10,2007 to September 10,2007 in Shiraz and visited by healthcare centers’ nurses 

during their first month of life. The healthcare were selected using cluster sampling scheme, 

with each healthcare center considered a cluster and the proportion of participants from each 

cluster being proportional to size of that healthcare center. The selected subjects were healthy 

singleton neonates without any medical complications whose mother residence of Shiraz. They 

were visited at healthcare centers at target ages 2,4,6 months and their arm circumference were 

measured in millimeters by nurses. A questionnaire completed at the time of recruitments to the 

study by the nurses in healthcare centers, included maternal and neonatal demographics and 

background data ( infant’s gender, birth weight, mother’s weight, mother’s age at delivery time 

and mother’s age at first menarche) also mother’s arm circumference were measured in 

millimeters(14-15). 
 

2.2. Statistical Modeling 

For modeling the boys’ arm circumference by mother’s weight, mother’s arm circumference, 

maternal age at delivery time and maternal age at menarche parametric or non-parametric 

regression methods can be used. In this study, a new method based on nonparametric proposed. 

In order to evaluate new method, results of the new model on the above data with output of the 

linear regression (parametric) and locally weighted regression (parametric) were compared.  

2.2.1. Proposed nonparametric regression 

Consider multiple regressions model in matrix by    XY  that X  can be a matrix of k 

vectors. Whereas k independent random variables are predictor variables and i observation for 

each of them then the matrix X  as follows. 
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Since  

   XY      so   

 XY  , as    YŶ     thus     XY ˆ         (1)  

Equation (1) is a matrix form e.g.  Ŷ ,   X   and     are matrices. Whereas relationship between 

a dependent variable and k independent variables are desired and i cases are contributed then 

aforementioned matrices shall be as follows: 

 

1

  

1Y

 































iY i

Y   

kiXX

XX

XXX

X























ik
 ..... 

i2
     Xi1

 
2k

 ..... 
22

    X21

1k
 ..... 

12
    

11

 

1
ˆ
k

 

  

ˆ
2

ˆ
1





























k








(2)  

 

We can multiply both sides of equation (1)   by  𝑋𝑇 from right-hand sides then we will have 

                                       𝑋𝑇𝑌  = 𝑋𝑇𝑋𝛽      
 
        𝑋𝑇𝑌  = (𝑋𝑇𝑋)𝛽             (3) 

It is clear that  𝑋𝑇𝑋 is a square matrix. If this matrix can be inverted, that is certainly true 

according to the enormous volume of information in growth data, and then we can multiply 

both sides of equation (3) in the inverse matrix (𝑋𝑇𝑋)   

thus: (𝑋𝑇𝑋)−1𝑋𝑇𝑌  = (𝑋𝑇𝑋)−1(𝑋𝑇𝑋)𝛽  (𝑋𝑇𝑋) is invertible matrix  so will give the identical matrix 

e.g.    (𝑋𝑇𝑋)−1𝑋𝑇𝑌  = 𝐼𝛽  

 Simply it can be shown that    (𝑋𝑇𝑋)−1𝑋𝑇𝑌  = 𝛽 , Where 𝛽 is the desired coefficient matrix. By 

obtaining the coefficient matrix for each considered model we should have an estimate of the 

response variable. Therefore, we estimate the fitted values for each model by locally weighted 

regression (loess) but 𝛽 coefficients obtained in this way is a constant value during the study 

period. Since children growth have not a specific trend in different age groups so estimating 

constant coefficients for the entire period in some points will have large deviations of actual 

values. To solve this problem, we tried to obtain time-dependent coefficients.In other words we 

will consider the time-dependent functions as coefficients of the independent variables in the 

regression model to achieve this objective, we get coefficients for certain percentage of the data 

and this procedure repeats until all data will be covered. We smooth different coefficients with 

respect to time. In fact Smooth curve are time-dependent coefficients. 
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3. Results 
At the birth time, the average of arm circumference for boys was 10.7 cm and arm 

circumference for girls was 10.5 cm. So, at the birth time arm circumference in boys were 0.2 

cm larger than girls. On the first visit about 2 month of age, the average arm circumference for 

boys was 12.7 and arm circumference for girls was 11.8 cm. In other words, within 2 month of 

age, arm circumference in boys was 0.9 cm larger than girls. Since speed growth rate of arm 

circumference in boys were different at distinct visits therefore, by analyzing data which were 

related to a visit, generalization those outputs to the whole period were impossible. It was 

similar for girls. These results are clear from Tables 1 and 2. 

 

Table1. Mean and standard deviation of arm circumference for boys 

Time of visit N mean S.D 

Birth time 139 10.7 1 

2 months 130 12.1 1.1 

4 months 128 14.1 1.2 

6 months 127 14.4 1.2 

 

Table 2. Mean and standard deviation of arm circumference for girls  

Time of visit N mean S.D 

Birth time 148 10.5 0.8 

2 months 141 11.8 1.1 

4 months 129 13.5 1.1 

6 months 117 13.7 1.2 
 

We investigated the normality of arm circumference in infants in different visits, since, in the 

case of normality per visit at least parametric model can be used at that occasion, therefore, we 

perform this investigation in all visits. 

 

 
                       Figure 1. normality graphs for arm circumference of boys at the birth time 
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                        Figure2. Normality graphs for arm circumference of boys at the second month of age 

 

 
Figure 3. Normality graphs for arm circumference of boys at the 4th month of age 

 

 
                             Figure 4. Normality graphs for arm circumference of boys at the 6th month of age 

With respect to deviations from the normal distribution we can say that arm circumference in 

boys is not normal. About newborn girls we achieved to same results. Regardless of different 

visits and age of newborn at the visit time, all data were burst in a column and called newborn 

arm circumference. Our objective is that these data are normal or not. In other words, 

regardless of the time factor all the data are considered in a moment.  
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                                  Figure 5. Normality graphs for arm circumference of boys in all visits 

With regarding to deviations and skewness which have shown by Figure 5, we can conclude 

that the arm circumferences in boys are not normally distributed. Therefore using the 

parametric method is impossible. Therefore, these data can be used to evaluate nonparametric 

regression model that described in the previous section. But here, we will suffice to 

nonparametric regression model for the boys arm circumference, versus mother’s weight, 

mother’s arm circumference, maternal age at delivery time and maternal age at menarche. 

We assume that: 

armc = )(
1

t  (Mweight) + )(
2

t  (Marmc) + )(
3

t (Mad) + )(
4

t (Mam)          

Mother’s weight (Mweight), mother’s arm circumference (Marmc)   , maternal age at delivery 

time  (Mad) and maternal age at menarche (Mam)   are four independent variables and the arm 

circumference of infant  boy is dependent variable. 

We smoothed  1
,

2
,

3
,

4
based on the time with third-degree spline smoothing method with a 

width of 0.67(13). 

Figure 6 shows variant coefficients based on the time for mother’s weight in the above model. 

This figure illustrates mother’s weight effects on boy’s arm circumference when mother’s arm 

circumference, maternal age at delivery and maternal age at menarche are as independent 

variables in the model. 
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Figure 6. Effect of mother’s weight on boy’s arm circumference when model has four independent 

variables (Mweight, Marmc, Mad, Mam) 

Figure 6 indicates variant coefficients based on the time for mother’s arm circumference in the 

model. This figure illustrates mother’s arm circumference effects on boy’s arm circumference 

when mother’s weight, maternal age at delivery and maternal age at menarche are as 

independent variables in the model. 

 

 
Figure 7. Effect of mother’s arm circumference on boy’s arm circumference when model has four 

independent variables (Mweight, Marmc, Mad, Mam) 

Figure 7 indicates variant coefficients based in time for maternal age at delivery time in the 

model. This diagram illustrate the effects of mother’s age at delivery time on boy’s arm 

circumference when  mother’s weight, mother’s arm circumference, maternal age at menarche 

are as independent variables in the model  
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Figure 8. Effect of maternal age at delivery time on boy’s arm circumference when model has four 

independent variables (Mweight, Marmc, Mad, Mam) 

 

Figure 9 indicate variant coefficients based on time for maternal age at menarche in the 

model. This figure illustrate the effects of maternal age at menarche on boys arm 

circumference when  mother’s weight, mother’s arm circumference and  mother’s age at 

the time of delivery are as independent variables in the model. 

 

Figure 9. Effect of maternal age at menarche  on boy’s arm circumference when model has four 

independent variables (Mweight, Marmc, Mad, Mam) 
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4. Discussion 

To evaluate the presented method in this section, we compared our method with linear 

regression (parametric) and generalized weighted regression (parametric). Linear regression 

(LR), generalized weighted regression (LO)and nonparametric regression (NR) were fitted to 

under study data when boy’s arm circumference was response variable  and mother's weight, 

mother’s  arm circumference , maternal age at delivery time and maternal  age at menarche 

considered as independent variables. Descriptive information of fitted values on boy’s arm 

circumference in above models and actual values of them obtained as follows. 

 

Table 3. Descriptive indices obtained from 3 different models                                                                       

and actual values of boy’s arm circumference 

 

y  
*

NRy



 
**

LOy



 
***

LRy



 

Birth time 10.7 10.67 10.83 10.51 

2 months 12.1 12.54 12.44 12.02 

4 months 14.1 14.35 13.96 14.21 

6 months 14.4 14.69 14.74 14.45 

Mean 12.76 12.85 13.03 12.77 

Median 12.81 12.92 13.11 12.75 

Standard. Deviation 1.7391 1.6034 0.4556 .01328 

Standard Error 0.0445 0.041 0.0117 0.0034 

Skewness .05604 0.5302 0.6031 0.0469 

Kurtosis 0.6794 0.1853 1.8364 -0.0159 

 *‌The fitted values of boy’s arm circumference by proposed nonparametric regression model 

**The fitted values of boy’s arm circumference by locally weighted regression model 

***The fitted Values of boy’s arm circumference by linear regression model 

y real values of boy infants arm circumference 

 

Comparing indices of central tendency and measure of dispersion of fitted value in the three 

models and real values of the samples study which were located at Table3 clearly  show that all 

indices represent the distribution of the fitted values from the model (NR) is closer than the 

Other fitted values . Since the model is desirable that fitted values are closer to the real values 

so we can be claim that the proposed model (NR) in this study for such data is better than linear 

regression and locally weighted regression. For further investigation, sum of squared residuals 

of each model could be used. The results were as follows: 

SSRes (NR) =3779.37 

SSRes (LO) = 4510.14 

SSRes (LR) =4585.79 
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Thus proposed nonparametric regression (NR) not only has similar distributions with real data 

distribution of boy’s arm circumference, but also it has lowest sum of squared residuals in 

comparison with linear regression and locally weighted regression. This means that   the fitted 

values represented by proposed nonparametric regression model compared to other models is 

closer to the true values. In order to evaluate the appropriateness of models, normality tests for 

residuals of models were used. Graphical approach was used for this objective, so histograms 

and pplot for the residuals of models drawn.  
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Figure 10. Normality graphs for residuals of proposed nonparametric regression model (NR) 

300

200

100

0

Normal P-P Plot 

1.00.75.50.250.00

1.00

.75

.50

.25

0.00

 
Figure 11.  Normality graphs for residuals of linear regression model (LR) 
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Figure 12. Normality graphs for residuals of locally weighted regression (LO) 

 

With comparing Figure 10,11 and 12, it will be obvious that only residuals of nonparametric 

regression (NR) is normally distributed and residuals  obtained from locally weighted 

regression and linear regression models showed a significant deviation from the normal 

distribution. Since the normality of residuals is a basic condition for the suitability model, these 

plots are another reason for preferring non-parametric regression models with time-dependent 

coefficients in comparison to other two models. So the proposed nonparametric regression with 

varying coefficients could be recommended for longitudinal data. 
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