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Abstract 

Background and Purpose: This study aimed to investigate the adsorption of Acid Blue 62 (AB62) 

as an anionic dye from aqueous solution onto as SBA-15/Polyaniline (SBA-15/PAni) 

mesoporous nanocomposite a low-cost adsorbent and feasible.   

Materials and Methods: Fourier transform infra-red spectroscopy (FTIR), Filed Emission 

Scanning Electron Microscope (FESEM), Transmission Electron Microscope (TEM), X-ray 

Diffraction (XRD), and BET were used to examine the structural characteristics of obtained 

adsorbent. The effective parameters on batch adsorption process such as pH, dosage, and time 

were investigated and optimized. For determining the type of kinetic model, pseudo first order, 

pseudo second order, Elovich and intra-particle diffusion kinetic models were applied.   

Thermodynamic parameters such as changes in Gibbs free energy (ΔG°), enthalpy (ΔH°), and 

entropy (ΔS°) were calculated.  

Results: Maximum BET specific surface and pore volume on the adsorbent were 224.4 m2/g and 

0.46 cm3/g, respectively. The obtained optimized condition was as follows: pH=2, time=60 min, 

temperature 25° C, and adsorbent dose = 0.3 g/l. The adsorption kinetic data well-fitted by 

pseudo-second order kinetic equation. The negative values of ΔG° and ΔH° (- 4.012 KJ/mol) and 

the positive value of ΔS° (0.409 J/mol K) showed that the AB62 adsorption process was 

spontaneous, physi-sorption, feasible and exothermic.   

Conclusion: SBA-15/PAni can well be used as a low-cost surface adsorbent for removal of AB62 

from aqueous media.  
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1. Introduction 

Dyes are widely used in several sources, 

such as textiles, printing, dyeing, dyestuff 

manufacturing,cosmetics, food processing, 

pharmaceutical, paper, rubber, plastics and 

leather; and their discharge into water 

causes environmental pollution (1-3). By 

development of dyeing process and 

industries, one of the main sources of 

pollution, and consequently a common 

problem for many countries, is dye 

wastewaters. Dye wastewaters can cause 

potential mutagenic, high biotoxicity, and 

carcinogenic effects on the aquatic toxicity 

and mammals. Plus, they can cause health 

problems like skin irritation, allergic 

dermatitis, and cancer in humans. As a 

result, organic dyes should be removed 

from wastewater before discharging into 

water in order to minimize the pollution 

risks produced by these sewages (1-4) 

Some methods have been carried out for 

dyes removal from dye wastewaters. A 

wide range of methods containing 

physical, chemical and biological 

techniques have been performed to reduce 

their impact on the environment as well. 

Although some chemical and biological 

methods, such as ozonation (6), 

coagulation (7), flocculation (8), 

photocatalytic degradation (9), 

hypochlorite treatment (10), trickling filter 

(11), activated sludge (12), chemical 

precipitation (13), physical separation (14), 

biological degradation (15), 

aerobic/anaerobic digestion (16), advanced 

oxidation processes (AOPs) (17), and 

electrochemical (18) techniques are 

suitable in removing dyes, they require 

some special equipment, and are usually 

energy intensive. In addition, these 

processes often generate large amounts of 

byproducts. Among all existing techniques 

that were studied, it was found that 

physical processes, such as adsorption, 

might be an efficient and economic 

process to remove dyes and control the 

bio-chemical oxygen demand, as well (19-

21). Moreover, this method is efficient due 

to its simplicity, convenience, reversibility 

and insensitivity to toxic substances. This 

process helps to transfer the species from 

the water sewage to a solid phase by 

maintaining the volume of sewage at a 

minimum amount (1-3,). To gain this 

purpose, a large amount of new materials 

were applied as adsorbents. 

Recently, mesoporous structures have 

attracted researchers as a novel type of 

adsorbents for removing organic 

compounds, such as dyes, phenolic 

compounds (18, 22), and heavy metals due 

to their unique features like the high 

specific surface and large and tunable pore 

channels.  Common used types of 

mesoporous silica structures are SBA-1 

(23), SBA-3 (24), SBA-15 (25), SBA-16 

(26), MCM- 41 (27), MCM-48 (28), and 

hexagonal mesoporous silica (HMS) (29).  

The SBA-15, a family of highly arranged 

mesoporous silica compounds, has 

attracted the great interest (to be modified 

and functionalized) due to its large 

mesopore volume, high surface area, 

thicker pore walls (3.1−6.4 nm), high 

thermal , hydrothermal stability, tailorable 

large offered pores from 4.6-30 nm, and 

slim distribution of pore size in 

comparison to other mesoporous silica 

structures (30). In addition, it reveals the 

presence of micropores that are in control 

into the pore boundaries and also intra-

connectivity in the channels of adjacent 

mesopore by micropores and slim 

mesopores. This non-stop network helps 

diffusion into the whole SBA-15 porous 
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structure during adsorbing process. 

Therefore, it is vital to discover SBA-15 

designation and modification support for 

high dyes adsorption capacity, especially 

higher than room temperature, by 

functionalization of amine (30). The amine 

group plays a key role in determining the 

medicated silica mesoporous adsorbents 

performance. Various amines have been 

tested including alkanolamines (31), 

amine-containing silanes, such as 3-amino 

propyl trimethoxysilane (32), oligomeric 

amines, such as polyethyleneimine (PEI) 

(33) and tetraethylenepentamine (TEPA) 

(34), and conductive electroactive 

polymeric compounds, such as polypyrrole 

(PPy) (35)and polyaniline (PAni) (36).  

In the last decade, PAni has gained so 

much attention for its suitable polymers 

due to their sufficient electrical 

conductivity, low-cost monomer, non-

toxicity, forming adhesive coating by 

different substrates, electrochemical 

properties, and their unique features to 

hybrid with inorganic mesoporous 

compounds, as well. Among them, PAnis 

have been widely provided as adsorbents 

due to sufficient environmental stability to 

water and oxygen, simple preparation and 

high adsorption capacities for important 

media in removing pollutants from water. 

This led to an increasing interest in 

selecting polymeric adsorbents [37-40]. 

The modification of as-prepared SBA-15 

mesoporous with conducting polymers can 

remarkably increase the adsorption 

capacity. Although a wide investigation 

has been carried out about the SBA-15 in 

the metal ion adsorption (41), there is no 

systematic study about dyes adsorption by 

SBA-15 modified with different amine-

containing compounds.  

In this study, SBA-15 was synthesized, 

and then functionalized by polyaniline. 

The produced material was used as an 

adsorbent for removal of Acid Blue 62 

from aqueous media. The effects of 

various parameters including adsorbent 

dose, initial concentration of the aqueous 

phase, and pH of the solution were 

thoroughly studied. Then, the absorption 

studies of Acid Blue 62, such as isotherms, 

kinetics, and thermodynamics sorption, 

were performed on the produced 

absorbents.    

2. Material and Methods  

2.1.Materials 

In order to conduct the experiment, 

Surfactant Pluronic P123 (EO20PO70EO20, 

average MW ∼5800) was purchased from 

Sigma-Aldrich Corporation. Tetraethyl 

orthosilicate (TEOS, reagent grade 98%), 

hydrochloric acid (HCl, 37%), and sodium 

hydroxide (.99.9%), Hexadecyl Trimethyl 

Ammonium Bromide (CTAB), acetone, 

sulfuric acid, and KIO3 were also provided 

from Merck Corporation. Aniline (ANI, 

99%) was obtained from Merck and was 

distilled under reduced pressure before 

use. Acid blue 62 (AB62), an anionic dye, 

(see Figure 1 and Table 1) were obtained 

from Dystar. All the above chemicals were 

used as received without any further 

purification. 
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Table 1 .Characteristics of AB62 (42) 

Name CAS number C.I. number Formula Molecular weight 
λmax 

 

Acid Blue 62 4368-56-3 62045 C20H19N2NaO5S 422.43 g/mol 620 nm 

 

 

Figure. 1 Chemical structure of AB62 [42] 

2.2.Preparation and Functionalization of 

Nan-mesoporous Silica SBA-15 

The mesoporous SBA-15 used in this work 

was synthesized according to the method 

proposed by Tayebi et al. (41). Typically, 

12.5 ml of P123 as amphiphilic Block 

copolymer nonionic surfactant of the 

organic structure directing agent, and 375 

ml of distilled water along with 75 ml of 

HCl as the pH controlling agent were 

stirred at 42 °C. Then, 31.5 ml of TEOS as 

the silica source was added to the 

homogeneous mixture. The obtained gel 

was placed in static conditions at 42 °C for 

24 h. Next, the hydrothermal temperature 

was increased to 138 °C and maintained 

for 24 h. After filtration, the obtained 

powder was transferred to a furnace for 

calcinations at 550 °C for 5 h in order to 

remove the existing organics in its pores. 

Surface modifications over nano-

mesoporous SBA-15 have been performed 

by post-synthesis grafting method (43). In 

order to functionalize SBA-15 sorbents, 1 

g of KIO3 was added to 100 mL sulfuric 

acid (1 M) and was stirred using magnetic 

mixer for 10 min at room temperature. 1 g 

of SBA-15 and 0.2 g of CTAB were added 

to the solution. Also, after 20 min, 1 mL 

fresh distilled aniline was added to the 

stirred solution. The reaction was carried 

out for 5 h at room temperature. The 

product SBA-15/PAni nanocomposite was 

filtered and rinsed several times with 

deionized water and acetone, then dried at 

60 °C temperature in an oven for 24 h.  

2.3.Instrumentation 

The surface morphology of the SBA-15 

and SBA-15/PAni was observed by the 

Field emission scanning electron 

microscopy (FESEM), TESCAN, MIRA3 

electron microscope. The nanomeso 

structures of these materials were 

characterized by Transmission Electron 

Microscopy (TEM), Philips, CM/20, 

Netherlands. N2 adsorption/desorption 

isotherms of the synthesized samples were 

carried out on Chem BET 3000 TPR/TDP, 

USA at 77 K to determine an average pore 

diameter. The specific surface area of 

nanomeso structures was measured by the 

Brunauer–Emmet–Teller (BET) method. 

The pore diameters were determined from 

the adsorption branch according to 

Barrett–Joyner–Halenda (BJH) method. 

The total pore volume was estimated from 

the amount adsorbed at the relative 

pressure (P/P0). For analyzing the meso 
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structures of pristine materials, small-angle 

X-ray diffraction (XRD) patterns in the 

range of 0.6 < 2θ < 9 were structurally 

determined with XPERT-PRO40 kV 

spectrometer using Cu Kα radiation (λ = 

1.5406 Å). Fourier transform infra-red 

(FTIR) spectra resulting for the 

mesoporous SBA-15 and SBA-15/PAni 

were investigated with Shimadzu model 

4300, Japan. The adsorption of dyes was 

detected using a UV-visible 

spectrophotometer Jenway, 6505, UK.  

2.4.Adsorption studies 

All Adsorption experiments were 

conducted in a closed 250 ml glass 

pyramid bottle in a shaker at 200 rpm. 

Batch experiments were carried out 

through contacting different dosage of the 

SBA-15 and SBA-15/PAni with 100 ml 

AB62 solution with different initial 

concentrations various pH values, 

temperatures and times. The pH values of 

the solution were adjusted in the range of 

2–12 using 0.1 N solutions of HCl and 

NaOH. At the end of the process, the 

adsorbent was separated by centrifuging at 

4000 rpm in 20 min. The concentration of 

AB62 in the solution was measured 

spectrophotometrically at 620 nm. Each 

experiment was repeated five times and the 

experimental results bore average values. 

The percentage of removal efficiency of 

AB62 and adsorbed amounts qt (mg/g) 

were calculated using the following 

relationships:  

R = 
(𝐶0−𝐶𝑒)

𝐶0
×  100                                (1) 

 
W

VCC
q to

t


                                     (2) 

where C0 and Ct represent dye 

concentrations at initial and different 

times, respectively (mg/L). V is the 

volume of dye bath (L) and W is the 

weight of adsorbent (g). 

3. Results  

3.1. Characterization analyses 

The evaluation of specific area, mean pore 

size diameter and, especially, pore size 

distribution of mesoporous materials are 

the subject of controversy [44]. The N2 

adsorption/desorption isotherms of the 

SBA-15 and SBA15/ PAni along with 

their B.J.H. pore size distributions are 

shown in Figure 2 and Table 2. While 

SBA-15 sample exhibited isotherm of 

classic type IV IUPAC with a hysteresis 

loop of type H1, a steep increase of 

adsorbed N2 was also observed at relative 

pressure P/P0 = 0.6–0.8, demonstrating the 

formation of cylindrical pore channel as 

expected for mesoporous materials (41, 

44). This material has also relatively high 

specific surface area and narrow average 

pore size distribution centered at 7.8 nm. 

In the case SBA-15/PAni nanocomposite 

displays, the type IV isotherm with a 

hysteresis loop was close to P/P0 = 0.5. At 

the same time, the inflection point of the 

isotherm shifted to lower P/P0. Thus, 

SBA-15/PAni isotherm maintained the 

typical SBA-15 isotherm shape, but with 

the PAni contents. In addition, the data 

reported in Table 2 indicate a decrease in 

specific surface area, and mesopore 

volume, and pore size of SBA15/PAni was 

consistent with the grafting of PAni 

species on the silica surface at the 

molecular level, which showed that the 

polymer well incorporated into the 

channels of SBA-15 (41, 44-46).   
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Figure 2. N2 adsorption/desorption isotherms of SBA-15 and SBA-15/PAni. 

 

 

Table 2 .Structural properties of SBA-15 and SBA-15/PAni. 

Pore Volume 

(BJH) (cm
3
/g) 

Pore 

diameter 

(BJH) (nm) 

Surface area 

(BET) (m
2
/g) 

Sample 

0.96 7.8 748.6 SBA-15 

0.46 4.8 224.4 SBA-15/Pani 

 

The analysis of the morphology of the 

synthesized SBA-15 was characterized by 

TEM, as shown in Figure 3a. The electron 

beam was radiated parallel to the main axis 

of the cylindrical pores. The well-ordered 

hexagonal arrays of pores were also 

confirmed by the TEM image with high 

uniformity, and the pore size diameter was 

evaluated at 7–8 nm, which is close to the 

pore size calculated by BJH measurement 

method (41, 45). After being modified 

with PAni, the hexagonal meso-structure 

could be well retained (Fig. 3b), which 

suggested that the surface modification did 

not obviously destroy the mesostructure. 

The obtained results were consistent with 

corresponding N2 sorption results, as 

shown in Figure 2.  

(a)  (b)   
Figure 3. TEM Morphology images of (a) SBA-15 and (b) SBA-15/PAni nanocomposite. 
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As illustrated in Figure 4, the FESEM image 

also revealed that SBA-15 and SBA-15/PAni 

nanocomposite were an almost hexagonal 

pillar with a relatively uniform size. In 

addition, particulates polymerization 

agglomerates have shown some pores on the 

outer and inner surface SBA-15, indicating 

assembly of tiny particle PAni. These results 

further illustrate that PAni has been 

successfully fixed on the pore wall of SBA-15 

by this modification method. 

 

(a)  (b)  
Figure 4. FESEM Morphology images of (a) SBA-15 and (b) SBA-15/PAni nanocomposite. 

XRD patterns of synthesized SBA-15 and 

SBA-15/PAni samples (Figure 5) showed 

that three well-resolved diffraction peaks 

have been indexed, where the single strong 

peak (10 0) at 2θ = 0.95◦ corresponding d 

spacing was 8.9 nm, and two weak peaks 

were (110) and (2 0 0) at 2θ = 1.59◦ and 

1.81◦, respectively, which represented a 

well-ordered silicate mesoporous structure 

with P6 mm hexagonal symmetry (47). A 

small shift toward the larger diffraction 

angles in our case, as compared to the 

literature, may be attributed to the 

difference in the synthesis techniques and 

calcinations temperature (47-49). 

 

  Figure 5. XRD patterns of SBA-15 and SBA-15/PAni. 
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As shown in Figure 5, the ordered meso-

structure of the SBA-15/PAni 

nanocomposite was well maintained after 

PAni modification, indicating that the 

structure of materials remained unaltered 

after grafting amine function group. 

However, the observed meaningful 

reduction of peak intensities for SBA-

15/PAni could be relevant to filling the 

channels of SBA-15 pores by PAni 

Polymers. Further, XRD pattern included 

thickness of silica walls, because the 

approximate pore size of SBA-15 

computed by the BJH method, 7.8 nm, was 

smaller than the d spacing 8.9 nm for peak 

(10 0) of XRD pattern (41,45).  

The FTIR spectroscopy provided 

important information regarding the 

formation of SBA-15/PAni 

nanocomposite. The FTIR spectra, analysis 

of SBA-15, and SBA-15/PAni 

nanocomposite are all shown in Figure 6, 

confirming the formation of SBA-15 

owing to the presence of the characteristic 

peaks of silicate materials. The bands 788 

and 1099 cm
-1

 belong to the symmetrical 

vibrations and asymmetric of bond Si-O-Si 

bending of SiO4 skeleton. The peaks at 

466, 935 and 3434 cm
-1

 are attributed to 

the torsion vibration of the bond Si-O-Si 

and the vibration of the Si-OH group, 

respectively. The appearances of 

characteristic peaks show the presence of 

Si-OH groups on the silica pore wall. After 

surface modification, some new peaks and 

some invisible peaks could be observed on 

the FTIR spectrum of SBA-15/PAni 

(Figure 6b), with an exception of the 

characteristic peaks involved with SBA-15 

silica, indicating incorporation of PAni 

polymer chains with SBA-15 materials 

(41, 47).   

  

 
Figure 6. FTIR spectra of SBA-15 and SBA-15/PAni. 

 

The main characteristic peaks for SBA-

15/PAni are assigned as follows: the peak 

at 1307 cm
−1

 can be attributed to C-N 

stretching vibration. The bands related 

with quinoid and phenyl stretching ring 

deformations were assigned at 1567 and 

1490 cm
−1

, respectively. In addition, the 

stretching bands at 1137 cm
−1

 belonged to 

N Q N (Q denotes the quinoid rings), 

indicating that the reaction between the 

OH groups of the silica network with the 

ethoxy groups of the organic precursor had 

taken place. These results demonstrate that 

PAni was successfully functionalized on 

the pore wall of SBA-15 [41, 45, 47, 50], 

which further confirmed the results of 

BET, FESEM, TEM and XRD 

measurements.  
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3.2.Adsorption studies 

3.2.1. Effect of pH 

The pH value of the solution is an 

important factor that controls the dye 

adsorption process from aqueous solution 

onto adsorbent surface active sites (41). 

The pH values influence the surface charge 

of adsorbent during adsorption. Therefore, 

the dye adsorption capacity was studied by 

varying pH ranging from 2 to 12, while 

other parameters, such as the amount of 

adsorbent, concentration of dye, time and 

temperature, remained constant. The 

experiment was performed on SBA-15 and 

SBA-15/PAni nanocomposite with an 

initial concentration of 40 mg/L, and the 

amount of adsorbent 0.02 g at room 

temperature with contact time of 120 min. 

The effect of pH changes on removal 

efficiency of AB62 is shown in Figure 7. It 

can be seen that the highest adsorption 

Value of AB62 was obtained at pH 2. 

According to Figure 7, the dye adsorption 

increased with a decrease in pH level, and 

an optimum value was reached at an 

equilibrium pH of around 2 and removal 

efficiency of 55.2%. At low pH values, it 

may lead to protonation of adsorbent 

surface (41), because for adsorption of 

anionic dye (AB62) by the adsorbent, the 

adsorbent must have a positive charge. In 

acidic environments, the amino groups of 

Polymer PAni (–NH2) are protonated in 

the presence of the released H
+
 Protons; 

therefore, in the current research, with 

protonation of the adsorption surface, the 

tendency of AB62 to the adsorption 

surface increased (41, 43).  

 
Figure 7. Effect of pH on the removal efficiency with SBA-15/PAni and SBA-15(initial concentration = 40 

mg/L, contact time = 120 min, adsorbent dosage = 0.2 g/L). 

As was observed in the present study, in 

comparison with the adsorption of SBA-15 

and SBA-15/PAni, SBA-15/PAni 

nanocomposite adsorbed more dye, 

because pure silica surface does not 

provide strong adsorption sites to interact 

strongly with acid dyes due to the fact that 

the hydroxyl groups on the silica surface 

fail to induce strong interactions with acid 

dyes (3). The adsorption capacity of 

mesoporous silica was enhanced through 

functionalization with amine groups. 

Actually, the higher adsorption capacity of 

SBA-15/PAni may be caused by 

processing via electrostatic interaction and 

hydrogen bond formation between the 

surface of the adsorbent and acid dyes [3]. 

3.2.2. Effect of adsorbent dosage 
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in determining the adsorption capacity and 
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removal efficiency. The effect of adsorbent 

amount (SBA-15 and SBA-15/PAni) on 

the adsorption of acid dye was investigated 

ranging from 0.02 to 0.10 g at pH 2 and 

100 ml solution of 40 mg/l AB62. The 

obtained results are presented in Figure 8. 

By increasing adsorbent dosage to 0.1 g, 

removal efficiency would enhance 

adsorbing sites on the adsorbents as 

expected. At 0.1 g value, the maximum 

efficiency was about 77.67%. However, 

the increase of adsorbent dose to more 

than 0.03 g did not affect removal 

efficiency, which can probably be 

attributed to the aggregation of adsorbent 

particles, the documented decrease in 

surface area, and the availability of less 

adsorption sites (3, 43). Moreover, the 

high adsorbent dosage might have 

influenced the physical characteristics of 

the solid–liquid suspensions by factors, 

such as increasing the viscosity and 

inhibiting the diffusion of dye molecules 

to the surface of the adsorbent (51). 

Therefore, 0.3 g/l of nanocomposite was 

demonstrated as the optimum adsorbent 

quantity to AB62 removal in this study.  

 

 
Figure 8. Effect of adsorbent dosage on the removal efficiency with SBA-15/PAni and SBA-15(initial 

concentration = 40 mg/L, contact time = 120 min, pH = 2). 
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This meant the longer time had no 

influence on dye adsorption. Therefore, the 

optimum contact time of 60 min was 

chosen for the next experiments.  
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Figure 9. Effect of contact time and temperature on the amount of AB62 dye adsorption on SBA-15/PAni 

(initial concentration = 40 mg/L, adsorbent dosage = 0.3 g/L, pH = 2). 
 

As shown in Figure 9, the amount of 

adsorbate per unit mass of adsorbent at 

time t, (qt,) was decreased through an 

increase in temperature from 25 to 45 
o
C. 

Therefore, the adsorption process of AB62 

on SBA-15/PAni nanocomposite was 

exothermic. 

3.3.Adsorption kinetics 

Adsorption kinetics, indicating the 

absorption rate, is an important 

characteristic of adsorbents. Finding a 

controlling mechanism is predominately a 

limiting-step in adsorption process, such as 

mass transfer and chemical reaction (52). 

Different kinetic models have been used to 

evaluate experimental data. In this part, for 

the purpose of investigating the kinetics of 

the process of AB62 adsorption on SBA-

15/PAni nanocomposite, four kinetic 

models including pseudo-first-order, 

pseudo-second-order, intra-particle 

diffusion equation and Elovich Model 

were used. Commonly, pseudo-first and 

pseudo-second linear kinetic models, as 

stated by equations 3 and 4, respectively, 

were used to fit the kinetic data:   

ln (qe - qt )= lnqe - tk1                         (3) 

𝑡

𝑞t
=

1

𝑘2𝑞e
2

+
t

𝑞e
                                   (4) 

where k1 and k2 were pseudo-first order 

and pseudo-second order rate constants, 

respectively; qe and qt was the amount of 

adsorbate per unit of adsorbent at 

equilibrium and at time t (mg/g), 

respectively. Rate constants and 

equilibrium adsorption capacities for 

pseudo-first-order and pseudo-second-

order were estimated from plotted ln (qe-

qt) versus t (Figure 10), and plotted t/qt 

versus t (Figure 11), respectively. The 

corresponding values are reported in Table 

3. Moreover, the high value of correlation 

coefficient showed that this model could 

be used to describe adsorption kinetics. 
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Figure 10. Pseudo-first-order adsorption kinetic for the adsorption AB62 onto SBA-15/PAni. 

 

In order to gain insight into the 

mechanisms and rate controlling steps 

affecting the kinetics of adsorption, the 

kinetic experimental results were found to 

the intra-particle diffusion (53). The rate of 

limiting-step can be single or a 

combination of diffusion steps. Common 

to the most adsorption processes was that 

the uptake varied almost proportionally 

with t
1/2

, the Weber-Morris plot, rather 

than with the contact time, t (54), whose 

model is expressed as: 

𝑞t =𝐾id
𝑡

1
2⁄  + C                        (5) 

where C is the intercept and Kid is the 

intra-particle diffusion rate constant, 

(mg/gmin
1/2

), which can be evaluated from 

the slope of the linear plot of qt versus t
(1/2)

 

as shown in Figure 12, for predicting the 

rate limiting-step. It can be seen from 

Figure 12 that the adsorption of AB62 

consisted of a few linear plots. Because of 

the boundary layer diffusion and deviation 

from the center, the first part of the plot 

indicated boundary layer thickness. Then, 

at the second part of the plot, the 

adsorption reduction was attributed to the 

intra-particle diffusion mechanism (52, 

53). This indicated that the intraparticle 

diffusion was not only a rate controlling 

step. For intra-particle diffusion model, the 

estimated values of rate constant Kid and 

R
2
 by data regression were 6.656 and 

0.828, respectively.  

 

 
Figure 11. Pseudo-second-order adsorption kinetic for the adsorption AB62 onto SBA-15/PAni. 
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One of the most useful models for describing 

such an activated chemical adsorption was the 

Elovich Model kinetic, which is expressed as 

follows: 

qt= 1/βln(αβ) + 1/βlnt                         (6) 

 

where qt is the adsorption capacity at time t 

(mg /g), α is the initial adsorption rate (mg 

/gmin), and β is the desorption constant (gm 

/g) during each experiment. Thus, the 

constants can be obtained from the slope and 

the intercept of a straight line plot of qt against 

ln (t). Figure 13 shows Elovich Model curve, 

in which the adsorption rate increased with 

high α value and low β value. 

 

 
Figure 12. Intra-particle diffusion adsorption kinetic for the adsorption AB62 onto SBA-15/PAni. 

 

 

 

 
Figure 13. Elovich adsorption kinetic for the adsorption AB62 onto SBA-15/PAni. 

 

The correlation coefficients (R
2
) for the 

four kinetics models are shown in Table 3. 

The calculated correlation coefficients are 

closer to unity for pseudo-second- order 

kinetics model than the other kinetics 

models. Therefore, it can be concluded that 

the adsorption kinetic of AB62 on SBA-

15/PAni fitted to the pseudo-second-order. 
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Table 3. Kinetic parameters for the adsorption of AB62 onto SBA-15/PAni. 

Pseudo-first-order K1 (min
-1

)   qe (mg/g) R
2
 

 0.046 67.424 0.984 

Pseudo-second-order K2 (min
-1

)   qe (mg/g) R
2
 

0.000985 125 0.999 

Intraparticle diffusion Kid (mg/g min)  R
2
 

6.656 0.828 

Elovich α (mg/g min) β (mg/g) R
2
 

52.279 0.050 0.96 

 

3.4.Adsorption thermodynamics 

In the current research, thermodynamic 

analysis was applied to understand the inherent 

energetic changes associated and the 

mechanism of adsorption process. To better 

estimate the effect of temperature on the 

adsorption of AB62 onto the SBA-15/PAni 

and to predict thermodynamic behavior of 

adsorption process, Gibbs free energy (ΔG°), 

enthalpy (ΔH°), and entropy (ΔS°) values were 

calculated from equations 7 and 8: 

∆G = - RTlnKd                                (7) 

RTR

S
K





ln                            (8) 

where Kd is the partition ratio, ΔH (J/mol) and 

ΔS (J/mol.K) are predicted from slope and 

intercept of data plotting of ln (Kd) versus 1/T, 

as shown in Figure 14. 

 

Table 4. Thermodynamic parameters for the adsorption of AB62 onto SBA-15/PAni. 

T (°C)  Kd (L/mol) ΔG° (kj/mol)  ΔH° (kJ/mol)  ΔS° (J/mol K)  R
2
 

298  4.805 -3.889 - 4.012 0.409 0.9997 

308  4.566 -3.888 

318  4.340 -3.881 

 

The thermodynamic parameters in this 

study are reported in Table 4. The negative 

ΔG° values confirmed the spontaneous and 

thermodynamically favorable nature of 

AB62 adsorption. Also, the ΔG° values 

were in the range of -20 to 0 kJ/mol, which 

indicated AB62 adsorption was a physi-

sorption process (54). Moreover, the 

negative value of ΔH° for the adsorption 

process of AB62 represented its 

exothermic nature. Thus, a higher 

adsorption capacity was achieved at lower 

temperature (54). Hence, the positive value 

of ΔS° indicated the reversible adsorption 

of AB62 with SBA-15/PAni 

nanocomposite.  
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Figure 14. Van’t Hoff Regression for the adsorption AB62 onto SBA-15/PAni. 

 

4. Conclusion 

In this research, SBA-15/PAni mesoporous 

nanocomposite was synthesized. The 

results of N2 adsorption/desorption and 

TEM images illustrated the formation of 

cylindrical pores and a well-ordered 

hexagonal array of SBA-15 with high 

specific area and average pore size of 7- 8 

nm. Moreover, the results of FTIR, XRD, 

TEM, FESEM and N2 

adsorption/desorption, indicated successful 

functionalization of PAni on pore wall of 

SBA-15. The SBA-15/PAni 

nanocomposite is an effective adsorbent 

for the removal of AB62 dye from water. 

The maximum removal efficiency of 

AB62 dye was observed to be at a sorbent 

dose of 0.03 g, contact time of 60 min, 

temperature of 25 °C, and pH= 2. The 

results of adsorption kinetic revealed that 

AB62 dye was well described by a pseudo-

second-order model. Based on the results 

obtained from thermodynamic parameters, 

such as enthalpy change (ΔH°), entropy 

change (ΔS°), and changes in the Gibbs 

free energy (ΔG°), it was revealed that the 

adsorption process was exothermic, physi-

sorption, feasible, and spontaneous. 
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