Volume 5, Issue 3 (Summer 2017)                   Iran J Health Sci 2017, 5(3): 17-34 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akbartabar I, Yazdanshenas M E, Tayebi H, Nasirizadeh N. Investigation of Acid Blue 62 Dye Adsorption using SBA-15/Polyaniline Mesoporous Nanocomposite: Kinetic and Thermodynamic Study. Iran J Health Sci. 2017; 5 (3) :17-34
URL: http://jhs.mazums.ac.ir/article-1-498-en.html
Associate Professor Department of Textile Engineering 1. Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
Abstract:   (1380 Views)
Background and Purpose: This study aimed to investigate the adsorption of Acid Blue 62 (AB62) as an anionic dye from aqueous solution onto as SBA-15/Polyaniline (SBA-15/PAni) mesoporous nanocomposite a low-cost adsorbent and feasible.
Materials and Methods: Fourier transform infra-red spectroscopy (FTIR), Filed Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscope (TEM), X-ray Diffraction (XRD), and BET were used to examine the structural characteristics of obtained adsorbent. The effective parameters on batch adsorption process such as pH, dosage, and time were investigated and optimized. For determining the type of kinetic model, pseudo first order, pseudo second order, Elovich and intra-particle diffusion kinetic models were applied. Thermodynamic parameters such as changes in Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were calculated.
Results: Maximum BET specific surface and pore volume on the adsorbent were 224.4 m2 /g and 0.46 cm3 /g, respectively. The obtained optimized condition was as follows: pH=2, time=60 min, temperature 25° C, and adsorbent dose = 0.3 g/l. The adsorption kinetic data well-fitted by pseudo-second order kinetic equation. The negative values of ΔG° and ΔH° (- 4.012 KJ/mol) and the positive value of ΔS° (0.409 J/mol K) showed that the AB62 adsorption process was spontaneous, physi-sorption, feasible and exothermic.
Conclusion: SBA-15/PAni can well be used as a low-cost surface adsorbent for removal of AB62 from aqueous media.
 
Full-Text [PDF 994 kb]   (463 Downloads)    
Type of Study: Original Article | Subject: Environmental Health

References
1. Zareyee D, Tayebi H, and Javadi SH. Preparation of polyaniline/activated carbon composite for removal of reactive red 198from aqueous solution. Iranian Journal of Organic Chemistry 2012; 4(1): 799-802.
2. Gan Y, Tian Na, Tian X, Ma L, Wang W, Yang C, Zhou Zh, and Wang Y. Adsorption behavior of methylene blue on amine-functionalized ordered mesoporous alumina. J Porous Mater 2015; 22: 147–155. [DOI:10.1007/s10934-014-9881-9]
3. Anbia M, Salehi S. 2012; Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3. Dyes and Pigments 2012; 94: 1-9. [DOI:10.1016/j.dyepig.2011.10.016]
4. Qin Q, Ma J, and Liu K. Adsorption of anionic dyes on ammonium-functionalized MCM-41. Journal of Hazardous Materials 2009; 162: 133–139. [DOI:10.1016/j.jhazmat.2008.05.016] [PMID]
5. Muthukumar M, Sargunamani D, Selvakumar N, Rao JV. Optimisatio of ozone treatment for colour and COD removal of acid dye effluent using central composite design experiment. Dyes and Pigments 2004; 63: 127–134. [DOI:10.1016/j.dyepig.2004.02.003]
6. Shi B, Li G, Wang D, Feng C, Tang H. Removal of direct dyes by coagulation: The performance of preformed polymeric aluminum species. Journal of Hazardous Materials 2007; 143: 567–574. [DOI:10.1016/j.jhazmat.2006.09.076] [PMID]
7. Riera-Torres M, Gutiérrez-Bouzán C, Crespi M. Combination of coagulation– flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination 2010; 252: 53–59. [DOI:10.1016/j.desal.2009.11.002]
8. Gupta VK, Jain R, Nayak A, Agarwal Sh, Shrivastava M. Re moval of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering C 2011; 31: 1062–1067. [DOI:10.1016/j.msec.2011.03.006]
9. Yang CH, Lee CC, Wen TC. Hypochlorite generation on Ru-Pt binary oxide for treatment of dye wastewater. Journal of Applied Electrochemistry 2000; 30: 1043- 1051. https://doi.org/10.1023/A:1004031804313 https://doi.org/10.1023/A:1003592721146 [DOI:10.1023/A:1004038503410]
10. Kornaros M, Lyberatos G. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. Journal of Hazardous Materials 2006; 136: 95–102. [DOI:10.1016/j.jhazmat.2005.11.018] [PMID]
11. Chu HC, Chen KM. Reuse of activated sludge biomass: I. Removal of basic dyes from wastewater by biomass. Process Biochemistry 2002; 37: 595–600. [DOI:10.1016/S0032-9592(01)00234-5]
12. Zhu M, Lee L, Wang H, Wang Z. Removal of an anionic dye by adsorption/ precipitation processes using alkaline white mud. Journal of Hazardous Materials 2007; 149: 735–741. [DOI:10.1016/j.jhazmat.2007.04.037] [PMID]
13. Ai L, Zhou Y, Jiang J. Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 2011; 266: 72–77. [DOI:10.1016/j.desal.2010.08.004]
14. Daneshvar N, Khataee AR, Rasoulifard MH, Pourhassan M. Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. Journal of Hazardous Materials 2007; 143: 214–219. [DOI:10.1016/j.jhazmat.2006.09.016] [PMID]
15. Sponza DT, Isik M. Decolorization and azo dye degradation by anaerobic/aerobic sequential process. Enzyme and Microbial Technology 2002; 31: 102– 110. [DOI:10.1016/S0141-0229(02)00081-9]
16. Shu H, Huang C, and Chang M.Decolorization of mono-azo dyes in wastewater by advanced oxidation process:A case study of acid red 1 and acid yellow23. Chemosphere 1994; 29(12): 2597-2607. [DOI:10.1016/0045-6535(94)90060-4]
17. Vlyssides AG, Papaioannou D, Loizidoy M, Karlis PK, Zorpas AA. Testing an electrochemical method for treatment of textile dye wastewater. Waste Management 2000; 20: 569-574. [DOI:10.1016/S0956-053X(00)00028-3]
18. Shukla P, Wang S, Sun H, Ang H, Tadé M. Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2. Chemical Engineering Journal 2010; 164: 255–260. [DOI:10.1016/j.cej.2010.08.061]
19. Biglari H, Javan N, Khosravi R, Zarei A. Direct Blue 71 Removal from Aqueous Solutions by Adsorption on Pistachio Hull Waste: Equilibrium, Kinetic and Thermodynamic Studies.Iranian Journal of Health Sciences 2016; 4(2): 55-70. [DOI:10.18869/acadpub.jhs.4.2.55]
20. Sobhanardakani S, Zandipak R. Removal of Anionic Dyes (Direct Blue 106 and Acid Green 25) from Aqueous Solutions Using Oxidized Multi-Walled Carbon Nanotubes. Iranian Journal of Health Sciences 2015;3(3): 48-57.
21. Zazouli M A, Balarak D, Mahdavi Y, Ebrahimi M. Adsorption rate of 198 reactive red dye from aqueous solutions by using activated red mud. Iranian journal of health sciences 2013; 1(1): 36-43. [DOI:10.18869/acadpub.jhs.1.1.36]
22. Thu P, Dieu H, Phi H, Viet N, Kim S, VoV. Synthesis, characterization and phenol adsorption of carbonyl-functionalized mesoporous silicas. J Porous Mater 2012; 19: 295–300. [DOI:10.1007/s10934-011-9475-8]
23. Kao H, Liao C, Palani A, Liao Y. One-pot synthesis of ordered and stable cubic mesoporous silica SBA-1 functionalized with amino functional groups. Microporous and Mesoporous Materials 2008; 113: 212– 223. [DOI:10.1016/j.micromeso.2007.11.030]
24. Anbia M, Hariri S. Removal of methylene blue from aqueous solution using nanoporous SBA-3. Desalination 2010; 261: 61–66. [DOI:10.1016/j.desal.2010.05.030]
25. Da'na E, Sayari A. Adsorption of heavy metals on amine-functionalized SBA-15 prepared by co-condensation: Applications to real water samples. Desalination 2012; 285: 62–67. [DOI:10.1016/j.desal.2011.09.034]
26. Kleitz F, Czuryszkiewicz T, Solovyov L, and Lindén M. X-ray Structural Modeling and Gas Adsorption Analysis of Cagelike SBA-16 Silica Mesophases Prepared in a F127/Butanol/H2O System. Chem. Mater 2006; 18 (21): 5070–5079. [DOI:10.1021/cm061534n]
27. Lee C, Liu S, Juang L, Wang C, Lin K, Lyu M. Application of MCM-41 for dyes removal from wastewater. Journal of Hazardous Materials 2007; 147: 997–1005. [DOI:10.1016/j.jhazmat.2007.01.130] [PMID]
28. De la Iglesia O, Pedernera M, Mallada R, Linc Z, Rocha J, Coronas J, Santamaria J. Synthesis and characterization of MCM-48 tubular membranes. Journal of Membrane Science 2006; 280: 867–875. [DOI:10.1016/j.memsci.2006.03.016]
29. Punyapalakul P, Takizawa S. Selective adsorption of nonionic surfactant on hexagonal mesoporous silicates (HMSs) in the presence of ionic dyes. Water Research 2006; 40: 3177 – 3184. [DOI:10.1016/j.watres.2006.07.008] [PMID]
30. Zhao A, Samanta A, Sarkar P, and Gupta R. Carbon Dioxide Adsorption on Amine- Impregnated Mesoporous SBA-15 Sorbents: Experimental and Kinetics Study. Ind. Eng. Chem. Res 2013; 52(19): 6480– 6491. [DOI:10.1021/ie3030533]
31. Kamarudin KSN, Alias N. Adsorption performance of MCM-41 impregnated with amine for CO2 removal." Fuel Processing Technology 2013; 106: 332– 337. [DOI:10.1016/j.fuproc.2012.08.017]
32. Gil M, Tiscornia I, de la Iglesia O, Mallada R, Santamaria J. Monoamine-grafted MCM-48: An efficient material for CO2 removal at low partial pressures. Chemical Engineering Journal 2011; 175: 291– 297. [DOI:10.1016/j.cej.2011.09.107]
33. Sanz R, Calleja G, Arencibia A, Sanz- Pe´rez ES. CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Applied Surface Science 2010; 256: 5323–5328. [DOI:10.1016/j.apsusc.2009.12.070]
34. Bhagiyalakshmi M, Yun L, Anuradha R,Jang H. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. Journal of Hazardous Materials 2010; 175:928–938. [DOI:10.1016/j.jhazmat.2009.10.097] [PMID]
35. Ballav N, Maity A, Mishra SB. High efficient removal of chromium (VI) using glycine doped polypyrrole adsorbent from aqueous solution. Chemical Engineering Journal 2012; 198–199: 536–546. [DOI:10.1016/j.cej.2012.05.110]
36. Daraei P, Madaeni SS, Ghaemi N, Salehi E, Khadivi M, Moradian R, Astinchap B. Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu (II) removal from water. Journal of Membrane Science 2012; 415–416: 250– 259. [DOI:10.1016/j.memsci.2012.05.007]
37. Ansari R, and Mosayebzadeh Z. Removal of Basic Dye Methylene Blue from Aqueous Solutions Using Sawdust and Sawdust Coated with Polypyrrole. J. Iran. Chem. Soc. 2010; 7(2): 339-350. [DOI:10.1007/BF03246019]
38. Bhaumik M, Maity A, Srinivasu VV, Onyango MS. Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers. Chemical Engineering Journal 2012; 181–182: 323– 333. [DOI:10.1016/j.cej.2011.11.088]
39. Mansour MS, Ossman ME, Farag HA. Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust. Desalination 2011; 272: 301–305. [DOI:10.1016/j.desal.2011.01.037]
40. Krishnani KK, Srinives S, Mohapatra BC, Bodd, VM, Hao J, Meng X, Mulchandani A. Hexavalent chromium removal mechanism using conducting polymers. Journal of Hazardous Materials 2013; 252–253: 99– 106. [DOI:10.1016/j.jhazmat.2013.01.079] [PMID]
41. Shafiabadi M, Dashti A, Tayebi H. Removal of Hg (II) from aqueous solution using polypyrrole/SBA-15 nanocomposite: Experimental and modeling. Synthetic Metals 2016; 212: 154–160. [DOI:10.1016/j.synthmet.2015.12.020]
42. Tayebi H, Yazdanshenas M E, Rashidi A, Khajavi R, Montazer M. The Isotherms, Kinetics, and Thermodynamics of Acid Dye on Nylon6 with Different Amounts of Titania and Fiber Cross Sectional Shape.Journal of Engineered Fibers and Fabrics 2015; 10(1): 97-108.
43. Tayebi H, Dalirandeh Z, Shokuhirad A, Mirabi A, Binaeian E. Synthesis of polyaniline/Fe3O4 magnetic nanoparticles for removal of reactive red 198 from textile waste water: kinetic, isotherm, and thermodynamic studies. Desalination and Water Treatment 2016; 1–13.
44. Bakala P, Briot E, Salles L, Bre´geault J. Comparison of liquid-phase olefin epoxidation over MoOx inserted within mesoporous silica (MCM-41, SBA-15) and grafted onto silica. Applied Catalysis A: General 2006; 300: 91–99. [DOI:10.1016/j.apcata.2005.09.038]
45. Li Q, Yu H, Song J, Pan X, Liu J, Wang Y, Tang L. Synthesis of SBA-15/polyaniline mesoporous composite for removal of resorcinol from aqueous solution. Applied Surface Science 2014; 290: 260– 266. [DOI:10.1016/j.apsusc.2013.11.065]
46. Katiyar A, Ji L, Smirniotis P, Pinto NG.Protein adsorption on the mesoporous molecular sieve silicate SBA-15: effects of pH and pore size. Journal of Chromatography A 2005; 1069: 119–126. [DOI:10.1016/j.chroma.2004.10.077] [PMID]
47. Ullah R, Atilhan M, Aparicio S, Canlier A, Yavuz CT. Insights of CO2 adsorption performance of amine impregnated mesoporous silica (SBA-15) at wide range pressure and temperature conditions. International Journal of Greenhouse Gas Control 2015; 43: 22–32. [DOI:10.1016/j.ijggc.2015.09.013]
48. Bui T, Choi H. Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. Journal of Hazardous Materials 2009; 168: 602–608. [DOI:10.1016/j.jhazmat.2009.02.072] [PMID]
49. Yiu HHP, Wright PA, Botting NP. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalized surfaces." Journal of Molecular Catalysis B: Enzymatic 2001; 15: 81–92. [DOI:10.1016/S1381-1177(01)00011-X]
50. Mureseanu M, Reiss A, Stefanescu I, David E, Parvulescu V, Renard G, Hulea V. Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere 2008; 73: 1499–1504. [DOI:10.1016/j.chemosphere.2008.07.039] [PMID]
51. Wu C. Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials 2007; 144: 93–100. [DOI:10.1016/j.jhazmat.2006.09.083] [PMID]
52. Kumar PS, Ramalingam S, Senthamarai C, Niranjanaa M, Vijayalakshmi P, Sivanesan S. Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination 2010;261: 52–60. [DOI:10.1016/j.desal.2010.05.032]
53. Indra DM, Vimal CS, Nitin KA. Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ashdkinetic study and equilibrium isotherm analyses. Dyes and Pigmentsb2006; 69: 210-223. [DOI:10.1016/j.dyepig.2005.03.013]
54. Peng X, Huang D, Odoom-Wubah T, Fu D, Huang J, Qin Q. Adsorption of anionic and cationic dyes on ferromagnetic ordered mesoporous carbon from aqueous solution: Equilibrium, thermodynamic and kinetics. Journal of Colloid and Interface Science 2014; 430: 272–282. [DOI:10.1016/j.jcis.2014.05.035] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA code

© 2018 All Rights Reserved | Iranian Journal of Health Sciences

Designed & Developed by : Yektaweb