Volume 6, Issue 3 (Summer 2018)                   Iran J Health Sci 2018, 6(3): 8-20 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahdar S, shikh L, Ahmadi S. Removal of Reactive Blue 19 Dye Using a Combined Sonochemical and Modified Pistachio Shell Adsorption Processes from Aqueous Solutions. Iran J Health Sci 2018; 6 (3) :8-20
URL: http://jhs.mazums.ac.ir/article-1-577-en.html
School of Public Health, Zabol University of Medical Sciences, Zabol, Iran , sh.ahmadi398@gmail.com
Abstract:   (3190 Views)
Background and purpose: Reactive Blue 19(RB19) dye is one of the major dangers to human health and environment. Hence, the removal of these compounds from polluted water has been considered. This study was an attempt to investigate the removal of RB19 dye from aqueous solution in the presence of modified pistachio shell.
Materials and Methods: In this experimental study, the treatability of water polluted with RB19dye was investigated by using sonochemical oxidation in a reactor. The sample with the desired concentrations of dye (10-80 mg/L) at pH 2-11 was prepared, then the required concentrations of MPS (0.1– 1.2 g/L) was flowed into the reactor intermittently.
Results: The results of the current study showed that 40.26% of the dye was removed in the presence of MPS after 20 min at pH 2, MPS dose 0.7 g/L, and concentration of 20 mg/L.
Conclusion: The findings showed that the combined process of ultrasonic and adsorption in the presence of MPS at optimal conditions of operation can be used as an acceptable option in the removal of dye from waters.
 
Full-Text [PDF 745 kb]   (1794 Downloads)    
Type of Study: Original Article | Subject: Health

References
1. Fernandes A, Morao A, Magrinho M, Lopes A, Goncalves I. Electrochemical degradation of CI acid orange 7. Dyes and Pigments. 2004; 61(3):287-96. [DOI:10.1016/j.dyepig.2003.11.008]
2. Ahmadi S, KordMostafapourF. Treatment of Textile wastewater using a combined Coagulation and DAF processes, Iran, 2016,Archives of Hygiene Sciences.2017;6 (3):229-234.
3. Pokhrel D, Viraraghavan T. Treatment of pulp and paper mill wastewater—a review. Science of the total environment. 2004; 333(1):37-58. [DOI:10.1016/j.scitotenv.2004.05.017] [PMID]
4. López-Grimau V, Gutierrez MC. Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light. Chemosphere. 2006;62(1):106-12. [DOI:10.1016/j.chemosphere.2005.03.076] [PMID]
5. Abdullah AH, Wong WY, Yaziz MI. Decolorization of reactive orange 16 dye by copper oxide system. Sains Malaysiana. 2010;39(4):587-91.
6. Arslan-Alaton İ, Kabdaşlı I, Vardar B, Tünay O. Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes. Journal of hazardous materials. 2009;164(2):1586-94. [DOI:10.1016/j.jhazmat.2008.09.004] [PMID]
7. Bazrafshan E, Zarei AA, Nadi H, Zazouli MA. Adsorptive removal of Methyl Orange and Reactive Red 198 dyes by Moringaperegrina ash.Indian journal of chemical technology.2014;2(2):105-113.
8. Albanis TA, Hela DG, Sakellarides TM, Danis TG. Removal of dyes from aqueous solutions by adsorption on mixtures of fly ash and soil in batch and column techniques. Global Nest International Journal. 2000;2(3):237-44.
9. Royer B, Cardoso NF, Lima EC, Macedo TR, Airoldi C. A useful organofunctionalized layered silicate for textile dye removal. Journal of hazardous materials.2010;181(1):366-74. [DOI:10.1016/j.jhazmat.2010.05.019] [PMID]
10. Ahmadi S, KordMostafapour F. Adsorptive removal of aniline from aqueous solutions by Pistaciaatlantica (Baneh) shells: isotherm and kinetic studies. Journal of Science Technology and Environment Informatics.2017;5(01):327-35. [DOI:10.18801/jstei.050117.35]
11. Kumar KV, Ramamurthi V, Sivanesan S. Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae. Dyes and Pigments. 2006;69(1):102-7. [DOI:10.1016/j.dyepig.2005.02.005]
12. Florenza X, Solano AM, Centellas F, Martínez-Huitle CA, Brillas E, Garcia-Segura S. Degradation of the azo dye Acid Red 1 by anodic oxidation and indirect electrochemical processes based on Fenton's reaction chemistry. Relationship between decolorization, mineralization and products. Electrochimica Acta. 2014;142 :276-88. [DOI:10.1016/j.electacta.2014.07.117]
13. Bestani B, Benderdouche N, Benstaali B, Belhakem M, Addou A. Methylene blue and iodine adsorption onto an activated desert plant. Bioresource technology. 2008;99(17):8441-4. [DOI:10.1016/j.biortech.2008.02.053]
14. Ahmadi S, Banach A, Mostafapour FK, Balarak D. Study survey of cupric oxide nanoparticles in removal efficiency of ciprofloxacin antibiotic from aqueous solution: adsorption isotherm study. Desalination and water treatment. 2017;89:297-303. [DOI:10.5004/dwt.2017.21362]
15. Taheri M, Moghaddam MA, Arami M. Techno-economical optimization of Reactive Blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models. Journal of environmental management.2013;128:798-806. [DOI:10.1016/j.jenvman.2013.06.029] [PMID]
16. Hepel M, Luo J. Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes. Electrochimica Acta. 2001;47(5):729-40. [DOI:10.1016/S0013-4686(01)00753-8]
17. EPA, Handbook Advanced Photochemical Oxidation Processes, US EPA, Cincinnati, OH, 1998.
18. Inan H, Dimoglo A, Şimşek H, Karpuzcu M. Olive oil mill wastewater treatment by means of electro-coagulation. Separation and purification technology. 2004;36(1):23-31. [DOI:10.1016/S1383-5866(03)00148-5]
19. Eslami A, Yazdanbakhsh AR, Momayyezi MH. Removal of reactive dyes from textile wastewater using sonochemical process: effective parameters study. Journal of Research & Health.2015;5(2):184-192.
20. Shokohi R, Mahvi AH, Bonyadi Z. sonochemical/hydrogen peroxide processes forcyanide removal from aqueous solutions. Journal of Mazandaran University of Medical Sciences. 2009;19(73):59-67. [In Persian]
21. Rahdar S, Igwegbe CA, RahdarA, Ahmadi S. Efficiency of sono-nano-catalytic process of magnesium oxide nano particle in removal of penicillin G from aqueous solution. Desalination and Water Treatment. 2018; 106:330–335. [DOI:10.5004/dwt.2018.22102]
22. Ahmadi S, Mostafapour FK. Survey of Efficiency of Dissolved Air Flotation in Removal Penicillin G Potassium from Aqueous Solutions. British Journal of Pharmaceutical Research. 2017; 15(3):1-11. [DOI:10.9734/BJPR/2017/31180]
23. Ahmadi S, Kord Mostafapour F, Bazrafshan E. Removal of aniline and from aqueous solutions by coagulation/flocculation–flotation. Chemical Science International Journal.2017;18(3):1-10. [DOI:10.9734/CSJI/2017/32016]
24. Rahdar S, Ahmadi S. Removal of Phenol and Aniline from Aqueous Solutions by Using Adsorption on to Pistaciaterebinthus: Study of Adsorption Isotherm and Kinetics. Journal of Health Research in Community. Winter. 2017;2(4):35-45.[In Persian]
25. Bazrafshan E, AhmadiS. Removal COD of Landfill Leachate Using Coagulation And Activated Tea Waste (ZnCL2) Adsorption. International Journal of Innovative Science, Engineering & Technology.2017;4(4):339-347.
26. Khoshnamvand N, Ahmadish, Mostafapour F. Kinetic and Isotherm Studies Ciprofloxacin an Adsorption using Magnesium Oxide Nanopartices. Journal of Applied Pharmaceutical Science. 2017; 7(11):079-083.
27. Sarvani R, Damani E, Ahmadi Sh. Adsorption Isotherm and Kinetics Study: Removal of Phenol Using Adsorption onto Modified Pistacia mutica shells. Iranian Journal of Health Sciences. 2018; 6 (1):33-42. [DOI:10.29252/jhs.6.1.33]
28. Vijayaraghavan K, Yun YS. Biosorption of CI Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp. Dyes and Pigments. 2008;76(3):726-32. [DOI:10.1016/j.dyepig.2007.01.013]
29. El-Ashtoukhy ES, Mobarak AA, Fouad YO. Decolourization of Reactive Blue 19 Dye Effluents by Electrocoagulation in a Batch Recycle New Electrochemical Reactor. International journal of electrochemical science. 2016;11(3):1883-97.
30. Bazrafshan E, Mostafapour FK, Mahvi AH. Phenol removal from aqueous solutions using pistachio-nut shell ash as a low cost adsorbent. Fresenius Environmental Bulletin. 2012;21:2962-2968.
31. Biglari H. Evaluation of Phenol Removal from Aqueous Solution by Banana Leaf Ash. Journal of Global Pharma Technology. 2017;9(3):20-8.
32. Behnajady MA, Modirshahla N, Ghanbary F. A kinetic model for the decolorization of CI Acid Yellow 23 by Fenton process. Journal of Hazardous Materials. 2007;148(1):98-102. [DOI:10.1016/j.jhazmat.2007.02.003] [PMID]
33. Javid A, Moghaddas F, Yosefi F, Davardoost F, Ghodrati F. Comparing Efficiency of TiO2 Nano-Particles with TiO2 Nano-Fiber in Removing Reactive Blue 19 by Photo-Catalytic Oxidation Process. Journal of Health. 2015;6(3):245-55.
34. McKay G, Hadi M, Samadi MT, Rahmani AR, Aminabad MS, Nazemi F. Adsorption of reactive dye from aqueous solutions by compost. Desalination and water treatment. 2011;28(1-3):164-73. [DOI:10.5004/dwt.2011.2216]
35. Muruganandham M, Shobana N, Swaminathan M. Optimization of solar photocatalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO 2. Journal of Molecular Catalysis A: Chemical. 2006; 246(1):154-61. [DOI:10.1016/j.molcata.2005.09.052]
36. Joseph CG, Puma GL, Bono A, Krishnaiah D. Sonophotocatalysis in advanced oxidation process: a short review. UltrasonicsSonochemistry. 2009;16(5):583-9. [DOI:10.1016/j.ultsonch.2009.02.002] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Designed & Developed by: Yektaweb