Volume 7, Issue 2 (Spring 2019)                   Iran J Health Sci 2019, 7(2): 49-60 | Back to browse issues page

XML Print

Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran , fazelidinan@gmail.com
Abstract:   (3153 Views)
Background and purpose: Mosquitoes are responsible for the transmission of many pathogens such as malaria, yellow fever, dengue fever, and so on. The control of mosquitoes using chemical insecticides is not always a sensible approach, so, alternative biological control methods, especially the use of larvivorous fishes, can play a significant role in controlling of mosquito larvae.
Materials and Methods: In this narrative review study, papers and dissertations were collected without time and language limits from international electronic databases in Google Scholar, PubMed, ScienceDirect, Web of Science, Ovid, Medline and WHO site, and Iranian scientific databases including: Barakatkns, SID, Civilica, Magiran, and Medlib using appropriate keywords from 1937 to 2018. Finally, 55 sources were selected and criticized, interpreted, and analyzed.
Results: In the study, some of larvivorous fishes including Aphanius dispar, Carassius auratus (goldfish), Gambusia affinis, and Poecilia reticulate (guppy) have been investigated as important predators of mosquito larvae. Among these fish, Gambusia, Aphanius dispar, Colisa Lalia, Danio rerio, Goldfish, Guppy and Oreochromis mossambica are present in different regions of Iran.
Conclusion: Given the fact that malaria carriers are present in many regions of Iran and the climate of Iran is also potentially suitable for the transmission of malaria, it is recommended to use larvivorous fishes that are compatible with the environmental conditions of each area.
Full-Text [PDF 747 kb]   (1777 Downloads)    

1. Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MUG, Revie CW. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2018; 67: 25-35. [DOI:10.1016/j.ijid.2017.11.026] [PMID] [PMCID]
2. Benelli G, Jeffries CL, Walker T. Biological Control of Mosquito Vectors: Past, Present, and Future. Insects. 2016; 7(4): 1-18. [DOI:10.3390/insects7040052] [PMID] [PMCID]
3. Collins LE, Blackwell A. The biology of Toxorhynchites mosquitoes and their potential as biocontrol'agents. Biocontrol News and Information. 2000; 21(4): 105-16.
4. Milam C, Farris J, Wilhide J. Evaluating mosquito control pesticides for effect on target and nontarget organisms. Archives of Environmental Contamination and Toxicology. 2000; 39(3): 324-8. [DOI:10.1007/s002440010111] [PMID]
5. Gratz N, Pal R. Malaria vector control: larviciding. Malaria: Principles and Practices of Malariology. 1988: 1213-26.
6. Mulla MS. Mosquito control investigations with emphasis on the integration of chemical and biological control in mosquito abatement. California Mosquito Control Association; 1961.
7. Raghavendra K, Subbarao S. Chemical insecticides in malaria vector control in India. ICMR bulletin. 2002; 32(10): 1-7.
8. Haas R, R. P. Mosquito larvivorous fishes. Bulletin of the ESA. 1984; 30(1): 17-25. [DOI:10.1093/besa/30.1.17]
9. Walton WE. Larvivorous fish including Gambusia. Journal of the American Mosquito Control Association. 2007; 23(2): 184-221. [DOI:10.2987/8756-971X(2007)23[184:LFIG]2.0.CO;2]
10. Gerberich JB. Update of annotated bibliography of papers relating to the control of mosquitos by the use of fish for the years 1965-1981. Geneva: World Health Organization; 1985.
11. Waage J, Greathead D. Biological control: challenges and opportunities. Philosophical Transactions of the Royal Society of London B, Biological Sciences. 1988; 318(1189):111-28. [DOI:10.1098/rstb.1988.0001]
12. Arthington A, Marshall C. Diet of the exotic mosquitofish, Gambusia holbrooki, in an Australian lake and potential for competition with indigenous fish species. Asian Fisheries Science. 1999; 12(1):1-16.
13. Job T. An investigation of the nutrition of the perches of the Madras coast. Records of the Indian Museum. 1940; 42:289-364.
14. Hora S, Mukherjee D. The absence of millions, Lebistes reticulates (Peters) in India. Malaria Bureau No. 4. Health Bulletin No. 1938; 12:1-49.
15. Tabibzadeh I, Behbehani G, Nakhai R. Use of Gambusia fish in the malaria eradication programme of Iran. Bulletin of the World Health Organization. 1970; 43(4): 623.
16. Esmaeili HR, Teimori A, Feridon O, Abbasi K, Brian WC. Alien and invasive freshwater fish species in Iran: Diversity, environmental impacts and management. Iranian Journal of Ichthyology. 2015; 1(2): 61-72.
17. Lacey LA, Lacey CM. The medical importance of riceland mosquitoes and their control using alternatives to chemical insecticides. Journal of the American Mosquito Control Association Supplement. 1990; 2:1-93.
18. Blaustein L, Chase JM. Interactions between mosquito larvae and species that share the same trophic level. Annual review of entomology. 2007; 52(1): 489-507. [DOI:10.1146/annurev.ento.52.110405.091431] [PMID]
19. Ataur-Rahim M. Observations on Aphanius dispar (Ruppell, 1828), a mosquito larvivorous fish in Riyadh, Saudi Arabia. Annals of tropical medicine and parasitology. 1981; 75(3): 359-62. [DOI:10.1080/00034983.1981.11687451] [PMID]
20. Louis JP, Albert JP. Malaria in the Republic of Djibouti. Strategy for control using a biological antilarval campaign: indigenous larvivorous fishes (Aphanius dispar) and bacterial toxins. Medecine tropicale : revue du Corps de sante colonial. 1988; 48(2): 127-31.
21. Fletcher M, Teklehaimanot A, Yemane G. Control of mosquito larvae in the port city of Assab by an indigenous larvivorous fish, Aphanius dispar. Acta tropica. 1992; 52(2-3): 155-66. [DOI:10.1016/0001-706X(92)90032-S]
22. Reichenbacher B, Kamrani E, Esmaeili HR, Teimori A. The endangered cyprinodont Aphanius ginaonis (Holly, 1929) from southern Iran is a valid species: evidence from otolith morphology. Environmental Biology of Fishes. 2009; 86(4): 507. [DOI:10.1007/s10641-009-9549-5]
23. Kumar A, Sharma VP, Sumodan PK, Thavaselvam D. Field trials of biolarvicide Bacillus thuringiensis var. israelensis strain 164 and the larvivorous fish Aplocheilus blocki against Anopheles stephensi for malaria control in Goa, India. Journal of the American Mosquito Control Association. 1998; 14(4): 457-62.
24. Sharma V, Ghosh A, editors. Larvivorous fishes of inland ecosystems. Proceedings of the MRC-CIFRI Workshop Delhi: India Malaria Research Centre (ICMR) publication; 1994.
25. Mood S, Ebrahimzadeh Mousavi H, Mokhayer B, Ahmadi M, Soltani M, Sharifpour I. Centrocestus formosanus metacercarial infection of four ornamental fish species imported into Iran. Bulletin of the European Association of Fish Pathologists. 2010; 30(30): 146-9.
26. Mansouri B, Maleki A, Johari SA, Reshahmanish N. Effects of cobalt oxide nanoparticles and cobalt ions on gill histopathology of zebrafish (Danio rerio). Aquaculture, Aquarium, Conservation & Legislation. International Journal of the Bioflux Society (AACL Bioflux). 2015; 8(3): 438-444.
27. Mathayan S, Muthukrishnan J, Heleenal G. Studies on predation on mosquito larvae by the fish Macropodus cupanus. Hydrobiologia. 1980; 75(3): 255-8. [DOI:10.1007/BF00006490]
28. Chatterjee S, Das S, Chandra G. Gold fish (Carrasius auratus) as a strong larval predator of mosquito. Transactions of the Zoological Society of London. 1997; 1: 112-4.
29. Chatterjee S, Chandra G. Laboratory trials on the feeding pattern of Anopheles subpictus, Culex quinquefasciatus and Armigeres subalbatus larvae by Gambusia affinis. Science and Culture. 1997; 63: 51-2.
30. Menon PK, Rajagopalan PK. Control of mosquito breeding in wells by using Gambusia affinis and Aplocheilus blochii in Pondicherry town. The Indian journal of medical research. 1978; 68: 927-33.
31. Bheema Rao US, Krishnamoorthy K, Reddy CB, Panicker KN. Feasibility of mosquito larval control in casuarina pits using Gambusia affinis. The Indian journal of medical research. 1982; 76: 684-8.
32. Kant R, Pandey SD, Sharma SK. Role of biological agents for the control of mosquito breeding in rice fields. Indian journal of malariology. 1996; 33(4): 209-15.
33. Rafatjah H, Arata A. The use of larvivorous fish in antimalaria programmes. Geneva. World Health Organization,(unpublished document MAL/WP/756 Rev 1). 1975.
34. Chatterjee S, Chandra G. Feeding pattern on Gambusia affinis and Lebistes reticulates on Anopheles subpictus larvae in the laboratory and field condition. Journal of applied zoological researches. 1997; 8(2): 152-3.
35. Nalim S, Boewono D, Haliman A, Winoto E. Control demonstration of the rice field breeding mosquito Anopheles aconitus Donitz in Central Java (Indonesia), using Poecilia reticulata through community participation, 1: Experimental design and concept. Buletin Penelitian Kesehatan (Indonesia). 1985.
36. Sabatinelli G, Blanchy S, Majori G, Papakay M. Impact of the use of larvivorous fish Poecilia reticulata on the transmission of malaria in FIR of Comoros. Annales de parasitologie humaine et comparee. 1991; 66(2): 84-8. [DOI:10.1051/parasite/199166284] [PMID]
37. Vanderplank F. Nothobranchius and Barbus Species: indigenous anti-malarial Fish in East Africa. East African Medical Journal. 1941; 17(10): 431-436.
38. Vaidyanathan R, Feldlaufer MF. Bed bug detection: current technologies and future directions. The American journal of tropical medicine and hygiene. 2013; 88(4): 619-25. [DOI:10.4269/ajtmh.12-0493] [PMID] [PMCID]
39. Marjani M, Jamili S, Mostafavi P, Ramin M, A. M. Influence of 17-alpha methyl testosterone on masculinization and growth in tilapia (Oreochromis mossambicus). Journal of fisheries and aquatic science. 2009; 4(1): 71-4. [DOI:10.3923/jfas.2009.71.74]
40. Ghosh A, Bhattacharjee I, G. C. Biocontrol of larval mosquitoes by Oreochromis niloticus niloticus. Journal of Applied Zoological Researches. 2006; 17(1): 114-6.
41. Kim HC, Kim MS, HS Y. Biological control of vector mosquitoes by the use of fish predators, Moroco oxycephalus and Misgurnus anguillicaudatus in the laboratory and semi-field rice paddy. Korean Journal of Entomology. 1994.
42. Hurst TP, Brown MD, Kay BH. Laboratory evaluation of the predation efficacy of native Australian fish on Culex annulirostris (Diptera: Culicidae). Journal of the American Mosquito Control Association. 2004; 20(3): 286-91.
43. Ghosh A, Bhattacharjee I, Ganguly M, Mondal S, G. C. Efficacy of some common aquarium fishes as biocontrol agent of preadult mosquitoes. Buletin Penelitian Kesehatan (Indonesia). 2004; 32(4): 144-9.
44. Ghosh A, MANDAL S, Bhattacharjee I, G. C. Biological control of vector mosquitoes by some common exotic fish predators. Turkish journal of biology. 2005; 29(3): 167-71.
45. Willems KJ, Webb CE, Russell RC. A comparison of mosquito predation by the fish Pseudomugil signifier Kner and Gambusia holbrooki (Girard) in laboratory trials. Journal of vector ecology: journal of the Society for Vector Ecology. 2005; 30(1): 87-90.
46. Yu HS, JH. L. Biological control of malaria vector (Anopheles sinensis Wied.) by combined use of larvivorous fish (Aplocheilus latipes) and herbivorous hybrid (Tilapia mossambicus niloticus) in rice paddies of Korea. Korean journal of applied entomology. 1989; 28(4): 229-36.
47. Kramer V. The ecology and biological control of mosquitoes [Culex tarsalis, Anopheles freeborni and A. franciscanus [A. pseudopunctipennis franciscanus]] in California wild and white rice fields [using Bacillus thuringiensis and larvivorous fish]. Dissertation Abstracts International B, Sciences and Engineering. 1989;49.
48. Wu N, Liao GH, Li DF, Luo YL, Zhong GM. The advantages of mosquito biocontrol by stocking edible fish in rice paddies. The Southeast Asian journal of tropical medicine and public health. 1991; 22(3): 436-42.
49. Bellini R, Veronesi R, M. R. Efficacy of various fish species (Carassius auratus [L.], Cyprinus carpio [L.], Gambusia affinis [Baird and Girard]) in the control of rice field mosquitoes in Northern Italy. Bulletin of the Society for Vector Ecology. 1994; 19: 87-99.
50. Martinez-Ibarra J, Guillén YG, Arredondo-Jimenez J, M. R-L. Indigenous fish species for the control of Aedes aegypti in water storage tanks in Southern Mexico. BioControl. 2002; 47(4): 481-6. [DOI:10.1023/A:1015691831489]
51. Marti GA, Azpelicueta Mde L, Tranchida MC, Pelizza SA, Garcia JJ. Predation efficiency of indigenous larvivorous fish species on Culex pipiens L. larvae (Diptera: Culicidae) in drainage ditches in Argentina. Journal of vector ecology : journal of the Society for Vector Ecology. 2006; 31(1): 102-6. [DOI:10.3376/1081-1710(2006)31[102:PEOILF]2.0.CO;2]
52. Haq S, Yadav R, V. K. Developing larvivorous fish network for mosquito control in urban areas: A case study. ICMR Bulletin. 2003; 33(7): 69-73.
53. García‐Berthou E. Food of introduced mosquitofish: ontogenetic diet shift and prey selection. Journal of Fish Biology. 1999; 55(1): 135-47. [DOI:10.1111/j.1095-8649.1999.tb00663.x]
54. Hurlbert SH, Zedler J, Fairbanks D. Ecosystem Alteration by Mosquitofish (Gambusia affinis) Predation. Science. 1972;175(4022):639-41. [DOI:10.1126/science.175.4022.639] [PMID]
55. Walker K, Lynch M. Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential. Medical and veterinary entomology. 2007; 21(1): 2-21. [DOI:10.1111/j.1365-2915.2007.00674.x] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.