1. Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutrition & metabolism. 2010;7(1):7. [
DOI:10.1186/1743-7075-7-7] [
PMID] [
PMCID]
2. Torre LA, Siegel RL, Jemal A. Lung cancer statistics. In: Lung cancer and personalized medicine. Springer; 2016. p. 1-19. [
DOI:10.1007/978-3-319-24223-1_1] [
PMID]
3. Zhang H, Guttikonda S, Roberts L, Uziel T, Semizarov D, Elmore SW, et al. Mcl-1 is critical for survival in a subgroup of non-small-cell lung cancer cell lines. Oncogene. 2011;30(16):1963-1968. [
DOI:10.1038/onc.2010.559] [
PMID]
4. Tucker ZC, Laguna BA, Moon E, Singhal S. Adjuvant immunotherapy for non-small cell lung cancer. Cancer treatment reviews. 2012;38(6):650-661. [
DOI:10.1016/j.ctrv.2011.11.008] [
PMID]
5. Schiwitza A, Schildhaus H-U, Zwerger B, Rüschoff J, Reinhardt C, Leha A, et al. Monitoring efficacy of checkpoint inhibitor therapy in patients with non-small-cell lung cancer. Immunotherapy. 2019;11(9):769-782. [
DOI:10.2217/imt-2019-0039] [
PMID]
6. Cox DR. Analysis of survival data. Chapman and Hall/CRC; 2018.
7. Kleinbaum DG, Klein M. Survival analysis. Springer; 2010.
8. Kalantar-Zadeh K, Kuwae N, Regidor DL, Kovesdy CP, Kilpatrick RD, Shinaberger CS, et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney international. 2006;70(4):771-780. [
DOI:10.1038/sj.ki.5001514] [
PMID]
9. Klein JP, Van Houwelingen HC, Ibrahim JG, Scheike TH. Handbook of survival analysis. CRC Press; 2016. [
DOI:10.1201/b16248]
10. Ibrahim JG, Chen M-H, Sinha D. Bayesian Survival Analysis. Wiley StatsRef: Statistics Reference Online. 2014; [
DOI:10.1002/9781118445112.stat06003]
11. Lee E, Zhu H, Kong D, Wang Y, Giovanello KS, Ibrahim JG. BFLCRM: A Bayesian functional linear Cox regression model for predicting time to conversion to Alzheimer's disease. The annals of applied statistics. 2015;9(4):2153. [
DOI:10.1214/15-AOAS879] [
PMID] [
PMCID]
12. Wang W, Chen M-H, Wang X, Yan J. dynsurv: Dynamic Models for Survival Data [Internet]. 2017. Available from: https://CRAN.R-project.org/package=dynsurv
13. Wang X, Chen M-H, Yan J. Bayesian dynamic regression models for interval censored survival data with application to children dental health. Lifetime data analysis. 2013;19(3):297-316. [
DOI:10.1007/s10985-013-9246-8] [
PMID]
14. Yang H-X, Woo KM, Sima CS, Bains MS, Adusumilli PS, Huang J, et al. Long-Term Survival Based on the Surgical Approach to Lobectomy for Clinical Stage I Non-Small Cell Lung Cancer: Comparison of Robotic, Video Assisted Thoracic Surgery, and Thoracotomy Lobectomy. Annals of surgery. 2017;265(2):431. [
DOI:10.1097/SLA.0000000000001708] [
PMID] [
PMCID]
15. Fernandez FG, Kosinski AS, Furnary AP, Onaitis M, Kim S, Habib RH, et al. Differential effects of operative complications on survival after surgery for primary lung cancer. The Journal of thoracic and cardiovascular surgery. 2018;155(3):1254-1264. [
DOI:10.1016/j.jtcvs.2017.09.149] [
PMID]
16. Baine MJ, Verma V, Schonewolf CA, Lin C, Simone II CB. Histology significantly affects recurrence and survival following SBRT for early stage non-small cell lung cancer. Lung cancer. 2018;118:20-26. [
DOI:10.1016/j.lungcan.2018.01.021] [
PMID]
17. Wang S, Chen A, Yang L, Cai L, Xie Y, Fujimoto J, et al. Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival outcome. Scientific reports. 2018;8(1):1-9. [
DOI:10.1038/s41598-018-27707-4] [
PMID] [
PMCID]
18. Pacheco JM, Gao D, Smith D, Purcell T, Hancock M, Bunn P, et al. Natural History and Factors Associated with Overall Survival in Stage IV ALK-Rearranged Non-Small Cell Lung Cancer. Journal of Thoracic Oncology. 2019;14(4):691-700. [
DOI:10.1016/j.jtho.2018.12.014] [
PMID] [
PMCID]
19. Fine JP, Yan J, Kosorok MR. Temporal process regression. Biometrika. 2004; 91(3):683-703. [
DOI:10.1093/biomet/91.3.683]
20. Peng L, Huang Y. Survival analysis with temporal covariate effects. Biometrika. 2007; 94(3):719-733. [
DOI:10.1093/biomet/asm058]