Volume 10, Issue 1 (Winter 2022)                   Iran J Health Sci 2022, 10(1): 31-43 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vakilzadeh Y, Shabani Gorji K, Ghalamghash J, Noura M R. Heavy Metals Contamination in the Surface Sediments of Talar River, north of Iran. Iran J Health Sci. 2022; 10 (1) :31-43
URL: http://jhs.mazums.ac.ir/article-1-788-en.html
Department of Geology, Zahedan Branch, Islamic Azad University, Zahedan, Iran , k.shabani@iauzah.ac.ir
Abstract:   (358 Views)
Background and Purpose: The contamination by potentially toxic element (PTE) is a common environmental issue in worldwide rivers. The present study examined PTEs concentration in sediments of Talar River which is one of the main rivers in the Sothern Caspian Basin.
Materials and Methods: The sediment samples (n= 44) were collected from top 0–5 cm of surface sediment in the main channel and floodplain of Talar River using a Van-Veen grab sampler. The concentrations of trace elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). Principal component analysis (PCA) was used to evaluate possible relationships between the observed variables and source identification. Enrichment factor (EF) was also applied to determine the integrated effects of different elements and evaluate the sediment quality.
Results: The average concentration of all elements except Mo were found to be higher than the concentration of elements in upper continental crust (UCC). The result of enrichment factor (EF) indicated that most elements were unpolluted and showed minimal to moderate contamination level.  Multivariate statistical analysis indicated Pb, Cu, V, Zn, Cd, Co and Ni typically have anthropogenic sources. Whereas Mn, Sb, Sc, Mo and As showed geogenic source.
Conclusion: It was concluded that sediments in Talar River was then experiencing slightly polluted status originated from local anthropogenic sources in the basin which might potentially pose detrimental effects on both ecological and health conditions in the basin.
 
Full-Text [PDF 798 kb]   (180 Downloads)    
Type of Study: Original Article | Subject: Environmental Health

References
1. Borrell A, Tornero V, Bhattacharjee D, Aguilar A. Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh). Science of the Total Environment. 2016;545:414-23. [DOI:10.1016/j.scitotenv.2015.12.046] [PMID]
2. Mataba GR, Verhaert V, Blust R, Bervoets L. Distribution of trace elements in the aquatic ecosystem of the Thigithe river and the fish Labeo victorianus in Tanzania and possible risks for human consumption. Science of the Total Environment. 2016;547:48-59. [DOI:10.1016/j.scitotenv.2015.12.123] [PMID]
3. Mortazavi S, Norozi Fard P. Risk assessment of non-carcinogenic effects of heavy metals from Dez river fish. Iranian Journal of Health Sciences. 2017;5(4):10-25. [DOI:10.29252/jhs.5.4.10]
4. Almeida LC, da Silva Junior JB, Dos Santos IF, de Carvalho VS, de Santana Santos A, Hadlich GM, et al. Assessment of toxicity of metals in river sediments for human supply: Distribution, evaluation of pollution and sources identification. Marine Pollution Bulletin. 2020;158:111423. [DOI:10.1016/j.marpolbul.2020.111423] [PMID]
5. Joodavi A, Aghlmand R, Podgorski J, Dehbandi R, Abbasi A. Characterization, geostatistical modeling and health risk assessment of potentially toxic elements in groundwater resources of northeastern Iran. Journal of Hydrology: Regional Studies. 2021;37:100885. [DOI:10.1016/j.ejrh.2021.100885]
6. Fiket Ž, Fiket T, Ivanić M, Mikac N, Kniewald G. Pore water geochemistry and diagenesis of estuary sediments-an example of the Zrmanja River estuary (Adriatic coast, Croatia). J Soils Sed. 2019;19(4):2048-60. [DOI:10.1007/s11368-018-2179-9]
7. Ustaoğlu F, Islam MS. Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecol Indic. 2020;113:106237. [DOI:10.1016/j.ecolind.2020.106237]
8. Sobhanardakani S, Ghoochian M, Taghavi L. Assessment of heavy metal contamination in surface sediment of the Darreh-Morad Beyg River. Iranian Journal of Health Sciences. 2016;4(3):22-34. [DOI:10.18869/acadpub.jhs.4.3.22]
9. Cheng H, Li M, Zhao C, Yang K, Li K, Peng M, et al. Concentrations of toxic metals and ecological risk assessment for sediments of major freshwater lakes in China. Journal of Geochemical Exploration. 2015;157:15-26. [DOI:10.1016/j.gexplo.2015.05.010]
10. Haris H, Looi LJ, Aris AZ, Mokhtar NF, Ayob NAA, Yusoff FM, et al. Geo-accumulation index and contamination factors of heavy metals (Zn and Pb) in urban river sediment. Environmental Geochemistry and Health. 2017;39(6):1259-71. [DOI:10.1007/s10653-017-9971-0] [PMID]
11. Li J, Song L, Chen H, Wu J, Teng Y. Source apportionment of potential ecological risk posed by trace metals in the sediment of the Le'an River, China. J Soils Sed. 2020;20(5):2460-70. [DOI:10.1007/s11368-020-02604-4]
12. Taş B, Tepe Y, Ustaoğlu F, Alptekin S. Benthic algal diversity and water quality evaluation by biological approach of Turnasuyu Creek, NE Turkey. Desalin Water Treat. 2019;155:402-15. [DOI:10.5004/dwt.2019.24225]
13. Zhang H, Jiang Y, Ding M, Xie Z. Level, source identification, and risk analysis of heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China. Environmental Science and Pollution Research. 2017;24(27):21902-16. [DOI:10.1007/s11356-017-9855-y] [PMID]
14. Wang G, Yinglan A, Jiang H, Fu Q, Zheng B. Modeling the source contribution of heavy metals in surficial sediment and analysis of their historical changes in the vertical sediments of a drinking water reservoir. Journal of Hydrology. 2015;520:37-51. [DOI:10.1016/j.jhydrol.2014.11.034]
15. Malferrari D, Brigatti MF, Laurora A, Pini S. Heavy metals in sediments from canals for water supplying and drainage: mobilization and control strategies. Journal of hazardous materials. 2009;161(2-3):723-9. [DOI:10.1016/j.jhazmat.2008.04.014] [PMID]
16. Dai L, Wang L, Li L, Liang T, Zhang Y, Ma C, et al. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Science of the total environment. 2018;621:1433-44. [DOI:10.1016/j.scitotenv.2017.10.085] [PMID]
17. Sobhanardakani S, Mohammadi-Roozbahani M, Sorooshnia R, Karimi H. Assessment of heavy metal contamination in surface soils of Ahvaz IV industrial estate, Khuzestan province, Iran. Iranian Journal of Health Sciences. 2016;4(1):53-61. [DOI:10.18869/acadpub.jhs.4.1.53]
18. Varol M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of hazardous materials. 2011;195:355-64. [DOI:10.1016/j.jhazmat.2011.08.051] [PMID]
19. da Silva Ferreira M, Fontes MPF, Pacheco AA, Lima HN, Santos JZL. Risk assessment of trace elements pollution of Manaus urban rivers. Science of the Total Environment. 2020;709:134471. [DOI:10.1016/j.scitotenv.2019.134471] [PMID]
20. Yi Y-J, Sun J, Tang C-H, Zhang S-H. Ecological risk assessment of heavy metals in sediment in the upper reach of the Yangtze River. Environmental Science and Pollution Research. 2016;23(11):11002-13. [DOI:10.1007/s11356-016-6296-y] [PMID]
21. Tepe Y, Türkmen A, Türkmen M. Comparison of heavy metal accumulation in tissues of economically valuable fish species from two nearby lagoons in Mediterranean coastal area. 2017.
22. Yousefi S, Moradi HR, Keesstra S, Pourghasemi HR, Navratil O, Hooke J. Effects of urbanization on river morphology of the Talar River, Mazandarn Province, Iran. Geocarto International. 2019;34(3):276-92. [DOI:10.1080/10106049.2017.1386722]
23. Goodarzi F, Sanei H, Stasiuk L, Bagheri-Sadeghi H, Reyes J. A preliminary study of mineralogy and geochemistry of four coal samples from northern Iran. International journal of coal geology. 2006;65(1-2):35-50. [DOI:10.1016/j.coal.2005.04.014]
24. Yazdi M, Shiravani AE. Geochemical properties of coals in the Lushan coalfield of Iran. International Journal of Coal Geology. 2004;60(1):73-9. [DOI:10.1016/j.coal.2004.06.002]
25. (USEPA) UEPA. Handbook for sampling and sample preservation of water and wastewater. EPA; 1982.
26. Liu J, Li Y, Zhang B, Cao J, Cao Z, Domagalski J. Ecological risk of heavy metals in sediments of the Luan River source water. Ecotoxicology. 2009;18(6):748-58. [DOI:10.1007/s10646-009-0345-y] [PMID]
27. Fang X, Peng B, Zhang K, Zeng D, Kuang X, Wu B, et al. Geochemistry of major and trace elements in sediments from inlets of the Xiangjiang and Yuanjiang River to Dongting Lake, China. Environmental earth sciences. 2018;77(2):1-16. [DOI:10.1007/s12665-017-7193-5]
28. Kaushik A, Kansal A, Kumari S, Kaushik C. Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments. Journal of hazardous materials. 2009;164(1):265-70. [DOI:10.1016/j.jhazmat.2008.08.031] [PMID]
29. Turekian KK, Wedepohl KH. Distribution of the elements in some major units of the earth's crust. Geological society of America bulletin. 1961;72(2):175-92. [DOI:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2]
30. Reimann C, Caritat Pd. Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental science & technology. 2000;34(24):5084-91. [DOI:10.1021/es001339o]
31. Abrahim G, Parker R. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental monitoring and assessment. 2008;136(1):227-38. [DOI:10.1007/s10661-007-9678-2] [PMID]
32. Sutherland R. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental geology. 2000;39(6):611-27. [DOI:10.1007/s002540050473]
33. Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980;14(8):975-1001. [DOI:10.1016/0043-1354(80)90143-8]
34. Qingjie G, Jun D, Yunchuan X, Qingfei W, Liqiang Y. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China university of geosciences. 2008;19(3):230-41. [DOI:10.1016/S1002-0705(08)60042-4]
35. Müller G. Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971. 1979.
36. Wedepohl KH. The composition of the continental crust. Geochimica et cosmochimica Acta. 1995;59(7):1217-32. [DOI:10.1016/0016-7037(95)00038-2]
37. Dang P, Gu X, Lin C, Xin M, Zhang H, Ouyang W, et al. Distribution, sources, and ecological risks of potentially toxic elements in the Laizhou Bay, Bohai Sea: Under the long-term impact of the Yellow River input. Journal of Hazardous Materials. 2021;413:125429. [DOI:10.1016/j.jhazmat.2021.125429] [PMID]
38. Ip C, Li X, Zhang G, Farmer J, Wai O, Li YS. Over one hundred years of trace metal fluxes in the sediments of the Pearl River Estuary, South China. Environmental Pollution. 2004;132(1):157-72. [DOI:10.1016/j.envpol.2004.03.028] [PMID]
39. Ye Z, Chen J, Gao L, Liang Z, Li S, Li R, et al. 210Pb dating to investigate the historical variations and identification of different sources of heavy metal pollution in sediments of the Pearl River Estuary, Southern China. Marine pollution bulletin. 2020;150:110670. [DOI:10.1016/j.marpolbul.2019.110670] [PMID]
40. Pinto AGN, Horbe AMC, Silva MdSRd, Miranda SAF, Pascoaloto D, Santos HMdC. The human action effects on the hydrogeochemistry of Negro river at the Manaus shoreline. Acta Amazonica. 2009;39(3):627-38. [DOI:10.1590/S0044-59672009000300018]
41. Fukue M, Yanai M, Sato Y, Fujikawa T, Furukawa Y, Tani S. Background values for evaluation of heavy metal contamination in sediments. Journal of Hazardous Materials. 2006;136(1):111-9. [DOI:10.1016/j.jhazmat.2005.11.020] [PMID]
42. Moore F, Dehbandi R, Keshavarzi B, Amjadian K. Potentially toxic elements in the soil and two indigenous plant species in Dashkasan epithermal gold mining area, West Iran. Environmental Earth Sciences. 2016;75(3):268. [DOI:10.1007/s12665-015-5026-y]
43. Moore F, Sheykhi V, Salari M, Bagheri A. Soil quality assessment using GIS-based chemometric approach and pollution indices: Nakhlak mining district, Central Iran. Environmental monitoring and assessment. 2016;188(4):214. [DOI:10.1007/s10661-016-5152-3] [PMID]
44. Shi Z, Wang X, Shi Y, Ni S, Li Y, Wang D, et al. Impact of intensive mining on the distribution of heavy metals in water and sediment of Anning River, southwest China. Geochemistry: Exploration, Environment, Analysis. 2019;19(1):24-30. [DOI:10.1144/geochem2017-054]
45. Natali C, Bianchini G. Natural vs anthropogenic components in sediments from the Po River delta coastal lagoons (NE Italy). Environmental Science and Pollution Research. 2018;25(3):2981-91. [DOI:10.1007/s11356-017-0986-y] [PMID]
46. Gharibreza M, Masoumi H, Jafari Gorzin B, Rahimzadeh H, Asgharipour Dashtbozorg N. Assessing the Quality of Surface Sediments in the Tajan River and Determining the Level of Ecological Pollution. Environment and Water Engineering. 2020;6(4):485-500.
47. Sheykhi V, Moore F. Evaluation of potentially toxic metals pollution in the sediments of the Kor river, southwest Iran. Environmental monitoring and assessment. 2013;185(4):3219-32. [DOI:10.1007/s10661-012-2785-8] [PMID]
48. Rastmanesh F, Barati-Haghighi T, Zarasvandi A. Assessment of the impact of 2019 Karun River flood on river sediment in Ahvaz city area, Iran. Environmental Monitoring and Assessment. 2020;192(10):1-14. [DOI:10.1007/s10661-020-08607-5] [PMID]
49. Singh KP, Mohan D, Singh VK, Malik A. Studies on distribution and fractionation of heavy metals in Gomti river sediments-a tributary of the Ganges, India. Journal of hydrology. 2005;312(1-4):14-27. [DOI:10.1016/j.jhydrol.2005.01.021]
50. Bhuyan MS, Bakar MA, Rashed-Un-Nabi M, Senapathi V, Chung SY, Islam MS. Monitoring and assessment of heavy metal contamination in surface water and sediment of the Old Brahmaputra River, Bangladesh. Applied Water Science. 2019;9(5):1-13. [DOI:10.1007/s13201-019-1004-y]
51. Salomão GN, Dall'Agnol R, Angélica RS, Sahoo PK, Wang X. Geochemical mapping in stream sediments of the Carajás Mineral Province, part 2: Multi-element geochemical signatures using Compositional Data Analysis (CoDA). Journal of South American Earth Sciences. 2021;110:103361. [DOI:10.1016/j.jsames.2021.103361]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Health Sciences

Designed & Developed by : Yektaweb