دوره 12، شماره 1 - ( 12-1402 )                   جلد 12 شماره 1 صفحات 48-39 | برگشت به فهرست نسخه ها

Ethics code: IR.MUMS.REC.1400.248
Clinical trials code: Not Applicable


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Talkhi N, Akbari Sharak N, Yousefi R, Salari M, Sadati S M, Shakeri M T. Predicting COVID-19 Mortality and Identifying Clinical Symptom Patterns in Hospitalized Patients: A Machine-learning Study. Iran J Health Sci 2024; 12 (1) :39-48
URL: http://jhs.mazums.ac.ir/article-1-875-fa.html
تلخی نسرین، اکبری شارک نوشین، یوسفی راضیه، سالاری مریم، ساداتی سید مسعود، شاکری محمدتقی. Predicting COVID-19 Mortality and Identifying Clinical Symptom Patterns in Hospitalized Patients: A Machine-learning Study. علوم بهداشتی ایران. 1402; 12 (1) :39-48

URL: http://jhs.mazums.ac.ir/article-1-875-fa.html


، ShakeriMT@mums.ac.ir
چکیده:   (1096 مشاهده)
Background and Purpose: Identifying effective symptoms, demographic information, and underlying diseases to predict COVID-19 mortality is essential. We aimed to study the effective clinical and symptomatic characteristics of COVID-19 mortality in hospitalized patients with positive polymerase chain reaction (PCR) test results.
Materials and Methods: For this study, we prospectively collected complete data on 26867 hospitalized individuals who tested PCR positive for COVID-19 from February 20, 2020, to September 12, 2021, in the Khorasan Razavi Province, Iran. We analyzed the data using artificial neural networks (ANN) and logistic regression (LR) models.
Results: The accuracy of the ANN model was higher than the LR (90.27% versus 90.15%). The ten most important predictors that contributed to the prediction of death were decreasing consciousness level, cough, PO2 level, age, chronic kidney disease, fever, headache, smoking status, chronic blood diseases, and diarrhea using the ANN model.
Conclusion: In conclusion, individuals suffering from chronic diseases such as cancer, kidney and blood diseases, as well as immunodeficiency are at a higher risk of mortality. This important finding can help decision-makers and medical professionals in their efforts to consider these conditions and provide effective preventative measures to reduce the risk of death.
متن کامل [PDF 1029 kb]   (368 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بيماريهاي عفوني وگرمسيري

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iranian Journal of Health Sciences

Designed & Developed by : Yektaweb