Volume 8, Issue 4 (Autumn 2020)                   Iran J Health Sci 2020, 8(4): 1-9 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ileke K D, Adesina J M, Adeoye A O, Omotayo Olabimi I. Biopesticides Activity of Three Medicinal Plants Extracts on the Developmental Stages of Malaria Vector, Anopheles Gambiae Giles (Diptera: Culicidae). Iran J Health Sci 2020; 8 (4) :1-9
URL: http://jhs.mazums.ac.ir/article-1-736-en.html
Owo, Ondo State, Nigeria , moboladesina@rugipo.edu.ng
Abstract:   (2152 Views)
Background and purpose: The insecticidal potential of Carica papaya (male and female species), and Spondias mombin were tested against the developmental stages of the malaria vector; Anopheles gambiae in the laboratory at an ambient condition.
Materials and Methods: Methanolic leaves extracts of S. mombin and C. papaya (male and female species) were carried out using cold extraction method. The extracts were evaporated and concentrated using a rotary evaporator under low pressure to make solvent-free. The An. gambiae larvae and pupae were exposed to 0.1, 0.2, 0.3, 0.4, and 0.5% concentrations of the plant methanolic extracts for 24 hours and their mortality was recorded.
Results: Results indicated that C. papaya (male species) caused significantly higher mortality of the An. gambiae larvae and pupae than the other plant extract tested (p< 0.05). It caused 100% larval mortality and 95% pupal mortality at 0.5% concentration. However, it was observed that the larvae were more susceptible to the extracts of all the plants tested. Data were analyzed using Analysis of Variance and log probit analysis.
Conclusion: All the three medicinal plants screened in this work showed high potency to induce mortality of both the larval and pupal stages of the malaria vector and could consequently be used to reduce malaria prevalence in the endemic areas of Nigeria.
Full-Text [PDF 418 kb]   (882 Downloads)    
Type of Study: Original Article | Subject: Hospital Management

1. World Health Organization (WHO). World malaria report 2012. WHO Press, Geneva, Switzerland.
2. World Health Organisation (WHO, 2019). World malaria report 2019. WHO Press, Geneva, Switzerland.
3. Rawani A., Ghosh A., and Chandra, G. Mosquito larvicidal potential of four common medicinal plants of India. Indian Journal of Medical Research. 2014; 140(1): 102-108.
4. Hikal W.M., Baeshen, R.S., and Said-Al Ahl H.A. Botanical insecticide as simple extractives for pest control. Cogent Biology. 2017; 3(1): 1404274. [DOI:10.1080/23312025.2017.1404274]
5. Ghosh A., Chowdhury N. and Chandra G. Plant extracts as potential mosquito larvicides. Indian Journal of Medical Research. 2012: 135(5): 581-598.
6. Arivoli S., Ravindran K.J. and Tennyson S. Larvicidal Efficacy of Plant Extracts against the Malarial Vector Anopheles stephensi Liston (Diptera: Culicidae). World Journal of Medical Sciences. 2012; 7(2): 77-80.
7. University of California at Davis. 2016. Papayas. Retrieved on the 28th of August 2020from http://www.wifss.ucdavis.edu/pdf
8. Ikram E.H.K., Stanley R., Netzel M., and Fanning K. Phytochemicals of papaya and its traditional health and culinary uses-A review. Journal of Food Composition and Analysis. 2015; 41: 201-211. [DOI:10.1016/j.jfca.2015.02.010]
9. Ukaegbu-Obi K.M., Anyaegbunam C.P., and Enya E. Antibacterial activity of Carica papaya seeds on some human pathogens. Annales of West University of Timisoara Series of Biology. 2018; 21(1): 11-16.
10. Ayoka A.O., Akomolafe R.O., Akinsomisoye O.S., and Ukponmwan O. E. Medicinal and economic value of Spondias mombin. African Journal of Biomedical Research. 2008; 11(2): 129-136. [DOI:10.4314/ajbr.v11i2.50714]
11. Lorenzi H., Matos F.J.de A. Plantas medicinais no Brasil: nativas e exóticas. 2. ed. Nova Odessa: Instituto Plantarum, 2008. 544 p.
12. Nworu C.S., Akah P.A., Okoye F.B.C., Toukam D.K., Udeh J., and Esimone C.O. The leaf extract of Spondias mombin L. displays an anti-inflammatory effect and suppresses inducible formation of tumor necrosis factor-α and nitric oxide (NO). Journal of Immunotoxicology. 2012; 8(1): 10-16. [DOI:10.3109/1547691X.2010.531406] [PMID]
13. Silva A.R.A, Morais S.M., Marques M.M. M., Lima D.M., Santos S.C.C., Almeida R.R., Vieira I.G.P. and Guedes M.I.F. Antiviral activities of extracts and phenolic components of two Spondias species against dengue virus. Journal of Venomous Animals and Toxins Including Tropical Diseases. 2011;17(4): 406-413.
14. Silva F.V.G.D., Silva S.D.M., Silva G.C.D., Mendonça R.M.N., Alves R.E., and Dantas A.L. Bioactive compounds and antioxidant activity in fruits of clone and ungrafted genotypes of yellow mombin tree. Food Science and Technology. 2012; 32(4): 685-691. [DOI:10.1590/S0101-20612012005000101]
15. Cabral B., Siqueira E.M., Bitencourt M.A., Lima M.C., Lima A.K., Ortmann C.F., Chaves V.C., Fernandes-Pedrosa M.F., Rocha H.A., Scortecci K.C and Reginatto F.H. Phytochemical study and anti-inflammatory and antioxidant potential of Spondias mombin leaves. Revista Brasileira de Farmacognosia. 2016;26(3): 304-311. [DOI:10.1016/j.bjp.2016.02.002]
16. Talukdar P., Ghosh N., and Verma S. Study of bio-larvicidal activity on Aedes aegypti through bioassay by crude extract of different parts of Carica papaya plant along with an in-silico approach for toxicity and mutagenicity of established phytochemicals by using QSAR modelling. World Journal of Pharmaceutical Research. 2018; 7(15): 802-816.
17. Ajaegbu E.E., Danga S.P.Y., Chijoke I.U., and Okoye F.B.C. Mosquito adulticidal activity of the leaf extracts of Spondias mombin L. against Aedes aegypti L. and isolation of active principles. Journal of vector borne diseases. 2016; 53(1):17-22.
18. Gillies M.T., and De Meillon B. The Anophelinae of Africa South of the Sahara. South Africa Institute of Medical Research. 1968; 54: 1-343.
19. Christiansen-Jucht C., Parham P.E., Saddler A., Koella J.C., and Basáñez M.G. Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae ss. Parasites and vectors. 2014; 7(1): 489. [DOI:10.1186/s13071-014-0489-3] [PMID] [PMCID]
20. Udo I. O. Potential of Zanthoxylum xanthoxyloides (Lam.) for the control of stored product insets Journal of stored produce and Postharvest Research. 2011; 2(3):40-44.
21. Ashamo M.O and Akinnawonu O. Insecticidal efficacy of some plant powders and extracts against the Angoumois grain moth, Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae), Archives of Phytopathology and Plant Protection. 2012; 45(9):1051-1058. [DOI:10.1080/03235408.2012.655153]
22. Ileke K. D and Bulus D. S. (2012). Evaluation of contact toxicity and fumigant effect of some medicinal plant and pirimiphos methyl powders against cowpea bruchid, Callosobruchus maculates (Fab) [Coleoptera: Chrysomelidae] in stored cowpea seeds. Journal of Agricultural Science, 4(4):279-284. [DOI:10.5539/jas.v4n4p279]
23. Ileke K.D., Odeyemi O.O. and Ashamo M.O. Response of Cowpea Bruchid, Callosobruchus maculatus (Fab.) [Coleoptera: Chrysomelidae] to Cheese Wood, Alstonia boonei De Wild Stem Bark extracted with different solvents. Achieves of Phytopathology and Crop Protection. 2013; 46(11): 1359-1370. [DOI:10.1080/03235408.2013.767492]
24. World Health Organization (WHO) (1996). Instruction for Determining the Susceptibility and Resistance of Mosquito Larvae to Insecticides. WHO/VBC/75.583, mimeographed document.
25. Akinkurolere R.O., Adedire C.O., Odeyemi O.O., Raji J., and Owoeye J.A. Bioefficacy of Extracts of some Indigenous Nigerian Plants on the developmental stages of mosquito (Anopheles gambiae). Jordan Journal of Biological Sciences. 2011; 4(4):237-242.
26. Finney D.J. Probit analysis 3rd edn. Cambridge, England: Cambridge University press. 1971.
27. Saranya M. Larvicidal, pupicidal activities and morphological deformities of Spathodea campanulata aqueous leaf extract against the dengue vector Aedes aegypti. European Journal of Experimental Biology. 2013; 3(2): 205-213.
28. Panneerselvam C., Murugan K., Kovendan K., and Kumar P.M. Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitology research. 2012; 111(6): 2241-2251. [DOI:10.1007/s00436-012-3073-9] [PMID]
29. Baskar K., Sudha V., Nattudurai G., Ignacimuthu S., Duraipandiyan V., Jayakumar M., Al-Dhabi N.A. and Benelli G. Larvicidal and repellent activity of the essential oil from Atalantia monophylla on three mosquito vectors of public health importance, with limited impact on non-target zebra fish. Physiological and Molecular Plant Pathology. 2018; 101: 197-201. [DOI:10.1016/j.pmpp.2017.03.002]
30. Eze E.A., Danga S.P.Y. and Okoye F.B.C. Larvicidal activity of the leaf extracts of Spondias mombin Linn. (Anacardiaceae) from various solvents against malaria, dengue and filarial vector mosquitoes (Diptera: Culicidae). Journal of Vector Borne Diseases. 2014; 51: 300-306.
31. Adesina J.M. and Idoko J.E. Field Evaluation of insecticidal activity of Chenopodium ambrosiodes and Spondias mombin crude extracts for the control of okra flea beetles Podagrica uniforma Jacq. (Coleoptera: chysomelidae). Research Journal of Agricultural Sciences. 2013; 4 (1): 37-39.
32. Mona M.A.D. Insecticidal potential of cardamom and clove extracts on adult red palm weevil Rhynchophorus ferrugineus. Saudi Journal of Biological Sciences. 2020; 27(1): 195-201. [DOI:10.1016/j.sjbs.2019.07.009] [PMID] [PMCID]
33. Okonkwo C.O., and Ohaeri O.C. Insecticidal potentials of some selected plants. Journal of Chemical and Pharmaceutical Research. 2013; 5(4): 370-376.
34. Okwute S.K. Plants as Potential Sources of Pesticidal Agents: A Review, Pesticides-Advances in Chemical and Botanical Pesticides, R.P. Soundararajan, IntechOpen. 2012.
35. Kovendan K., Murugan K., Kumar A.N., Vincent S., and Hwang J.S. Bioefficacy of larvicidal and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Parasitology Research. 2012; 110: 669-678. [DOI:10.1007/s00436-011-2540-z] [PMID]
36. Ileke K.D. and Ogungbite O.C. Alstonia boonei De Wild oil extract in the management of mosquito (Anopheles gambiae), a vector of malaria disease. Medicine Journal of Coastal Life Medicine. 2015; 3(7): 557-563. [DOI:10.12980/JCLM.3.2015J5-74]
37. Ileke K.D., Obimakinde E.T., Anthony C.M., and Olayinka-Olagunju J.O. Efficacy of Tithonia diversifolia and Momordica charantia Leaves Extracts against Malaria Vector, Anopheles gambiae Gile (Diptera: Culicidae). International Journal of Tropical Disease and Health. 2019; 36(2): 1-8. [DOI:10.9734/ijtdh/2019/v36i230139]
38. Valentina J., Poonguzhali T.V., Josmin L.L., and Nisha L.L. Mosquito larvicidal and pupicidal activity of seaweed extracts against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. International Journal of Mosquito Research. 2015; 2(4): 54-9.
39. Ileke K.D. and Olabimi I.O. Insecticidal activities of Chromolaena odorata and Vernonia amygdalina leaf extracts against Anopheles gambiae [Diptera: Culicidae]. International Journal of Tropical Disease. 2019; 2(1): 1-7. [DOI:10.23937/ijtd-2017/1710018]
40. Ileke K. D. and Adesina J.M. Toxicity of Ocimum basilicum L. and O. gratissimum L. extracts against main malaria vector, Anopheles gambiae Giles [Diptera: Culicidae} in Nigeria. Journal of Arthropod-Borne Diseases. 2019; 13(4): 362-368. [DOI:10.18502/jad.v13i4.2232]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Health Sciences

Designed & Developed by : Yektaweb