Volume 10, Issue 2 (Spring 2022)                   Iran J Health Sci 2022, 10(2): 29-39 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kushkestani M, Parvani M, Moghadassi M, Baradarn R. The Effect of Six-Week High-Intensity Interval Training on Muscle Expression of FTO and PPAR-γ in Obese Diabetic Rats. Iran J Health Sci 2022; 10 (2) :29-39
URL: http://jhs.mazums.ac.ir/article-1-797-en.html
M.Sc. Student of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran , mparva2020@gmail.com
Abstract:   (357 Views)
Background and purpose: Recent research suggests that obese people are up to 80 times more likely to develop type 2 diabetes than those with a normal BMI. Besides, obesity, inadequate physical activity, and unhealthy diets are the main causes of this metabolic disease. The purpose of this study was to investigate the effect of six weeks of high-intensity interval training on muscle expression of Fat mass and obesity-associated protein (FTO) and Peroxisome proliferator activator receptor gamma (PPAR-γ) in obese diabetic rats.
Material and methods: This experimental study was carried out on 12 male Wistar rats (220±20 g bodyweight and 10 weeks old). Animals received a high-fat diet within six weeks, and then in order to induce type 2 diabetes, an intraperitoneal injection of a single dose of 30 mg/kg freshly prepared streptozotocin (STZ) (Sigma, USA) solved in citrate buffer (pH 4.5) was performed. Diabetic rats were divided into two (High-Intensity Interval Training and control) groups randomly. HIIT program included five sessions of 30 minutes per week.
48 hours after the last training session, the outcomes were measured. The muscle expression of FTO and PPAR-γ was measured using the real-time PCR method. Independent samples t-test and Analysis of covariance (ANCOVA) were applied to compare the means.
Results: The expression of FTO (P<0.01), fasting blood sugar (P<0.001), weight (P<0.001) and HOMA-IR (P<0.004) significantly decreased after six weeks of high-intensity interval training, whilst PPAR-γ expression (P<0.007) significantly increased.

Conclusion: Regarding the results of this study, it can be stated that a six-week HIIT program can improve glucose metabolism and insulin sensitivity. It can also increase the expression of diabetes- and obesity-associated genes (e.g., PPAR-γ and FTO), and thereby plays a prominent role in the control and treatment of type 2 diabetes in obese patients.
 
Full-Text [PDF 597 kb]   (262 Downloads)    
Type of Study: Original Article | Subject: Health

References
1. WHO. Obesity and overweight [Internet]. 2020. Available from: https://www. who.int/news-room/fact-sheets/ detail/obesity-and-overweight
2. Association AD. Erratum. Classification and diagnosis of diabetes. Sec. 2. In standards of Medical Care in Diabetes-2016. Diabetes Care 2016; 39 (Suppl. 1): S13-S22. Diabetes care. 2016; 39(9):1653. [DOI:10.2337/dc16-er09] [PMID]
3. Kushkestani M, Parvani M, Bathaeezadeh SY, pour Nosrani SE. The Evaluation of Differences on Geriatric Syndromes between Active and Sedentary Elderly. Journal of Sports Science. 2020;8:56-66. [DOI:10.17265/2332-7839/2020.02.004]
4. Kushkestani M, Parvani M, Nosrani SEP, Rezaei S. The Relationship between Anthropometric Indices and Lipid Profiles In-OfficeEmployees. Journal of Sports Science. 2020;8:76-82. [DOI:10.17265/2332-7839/2020.02.006]
5. Kushkestani M, Parvani M, Nosrani SE, Rezaei S, Karimi M. Lipid Profile and Hepatic Enzymes Differences between Pre-diabetes and Normal Staff. Journal of Sports Science. 2020;8:67-75. [DOI:10.17265/2332-7839/2020.02.005]
6. Hamasaki H. Daily physical activity and type 2 diabetes: A review. World journal of diabetes. 2016;7(12):243. [DOI:10.4239/wjd.v7.i12.243] [PMID] [PMCID]
7. WHO. Diabetes [Internet]. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
8. Association AD. 4. Prevention or delay of type 2 diabetes. Diabetes Care. 2016;39(Supplement 1):S36-8. [DOI:10.2337/dc16-S007] [PMID]
9. Gregg EW, Sattar N, Ali MK. The changing face of diabetes complications. The lancet Diabetes & endocrinology. 2016;4(6):537-47. [DOI:10.1016/S2213-8587(16)30010-9]
10. Larder R, Cheung MM, Tung YL, Yeo GS, Coll AP. Where to go with FTO? Trends in Endocrinology & Metabolism. 2011; 22(2):53-9. [DOI:10.1016/j.tem.2010.11.001] [PMID]
11. Meyre D. Is FTO a type 2 diabetes susceptibility gene? Diabetologia. 2012; 55(4):873-6. [DOI:10.1007/s00125-012-2478-4] [PMID]
12. Zhao X, Yang Y, Sun BF, Zhao YL, Yang YG. FTO and obesity: mechanisms of association. Current diabetes reports. 2014;14(5):486. [DOI:10.1007/s11892-014-0486-0] [PMID]
13. Grunnet LG, Nilsson E, Ling C, Hansen T, Pedersen O, Groop L, et al. Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue. Diabetes. 2009;58 (10):2402-8. [DOI:10.2337/db09-0205] [PMID] [PMCID]
14. Bravard A, Lefai E, Meugnier E, Pesenti S, Disse E, Vouillarmet J, et al. FTO is increased in muscle during type 2 diabetes, and its overexpression in myotubes alters insulin signaling, enhances lipogenesis and ROS production, and induces mitochondrial dysfunction. Diabetes. 2011;60(1):258-68. [DOI:10.2337/db10-0281] [PMID] [PMCID]
15. Muralidaran S, Roy A. The role of PPAR agonists in diabetes mellitus. Journal of Pharmaceutical Sciences and Research. 2016;8(8):864.
16. Chiarelli F, Di Marzio D. Peroxisome proliferator-activated receptor-γ agonists and diabetes: current evidence and future perspectives. Vascular Health and Risk Management. 2008;4(2):297. [DOI:10.2147/VHRM.S993] [PMID] [PMCID]
17. Ghani B, Mohsenzadeh M, Feyzollahi F. THE EFFECT OF INTENSE PERIODIC TRAINING AND CONSUMPTION OF BLACK GRAPE SEED EXTRACT ON PPARA AND PPARΓ GENE EXPRESSION IN PANCREATIC TISSUE OF MALE RATS WITH TYPE 2 DIABETES. Iranian Journal of Diabetes and Metabolism. 2020;19(5):290-303.
18. Szkup M, Owczarek AJ, Schneider-Matyka D, Brodowski J, Lój B, Grochans E. Associations between the components of metabolic syndrome and the polymorphisms in the peroxisome proliferator-activated receptor gamma (PPAR-γ), the fat mass and obesity-associated (FTO), and the melanocortin-4 receptor (MC4R) genes. Aging (Albany NY). 2018;10(1):72. [DOI:10.18632/aging.101360] [PMID] [PMCID]
19. Kushkestani M, Parvani M, Moghadassi M, Nosrani SE. Investigation of Life Expectancy in Community-Dwelling Elderly Men in Iran And Its Related Factors. J Aging Sci. 2020;8:237.
20. Kushkestani M, Moghadassi M, Parvani M, Nosrani SEP, Rezaei S. Physical Activity as a Preventive Factor to Aging-Related Physical Dysfunction in Iranian Community-Dwelling Elderly. J Aging Sci [Internet]. 2020 Aguest;8. Available from: https://www.longdom.org/open-access/physical-activity-as-a-preventive-factor-to-agingrelated-physical-dysfunction-in-iranian-communitydwelling-elderly.pdf
21. Kushkestani M, ENosrani S, Parvani M, Rezaei S. The Relationship Between the Level of Physical Activity and Dementia in Elderly Residents of Nursing Homes in Tehran. Biomedical Journal of Scientific & Technical Research. 2020;29(3):22437-43. [DOI:10.26717/BJSTR.2020.29.004800]
22. Kushkestani M, Parvani M, maria Teixeira A. Physical Activity is a Preventive Factor Against SARSCOV-2 in Healthy Subjects (Possible Cellular and Molecular Mechanisms). Biomedical Journal of Scientific & Technical Research. 2020;29(3):22429-36. [DOI:10.26717/BJSTR.2020.29.004799]
23. Kushkestani M, Parvani M, Nosrani SE, Rezaei S. The Physical Activity and Fall Risk Among Iranian Older Male Adults. The Open Nursing Journal. 2020;14(1). [DOI:10.2174/1874434602014010159]
24. Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circulation research. 2019; 124(5):799-815. [DOI:10.1161/CIRCRESAHA.118.312669] [PMID]
25. Thyfault JP, Bergouignan A. Exercise and metabolic health: beyond skeletal muscle. Diabetologia. 2020;63(8):1464-74. [DOI:10.1007/s00125-020-05177-6] [PMID] [PMCID]
26. Kushkestani M, Parvani M, Kazemzadeh Y. SARS-COV-2 in type 2 diabetic patients: Possible roles of exercise training as a medicine. Current diabetes reviews. 2021; [DOI:10.2174/1573399817666210901121824] [PMID]
27. Kushkestani M, Parvani M, Ghafari M, Avazpoor Z. The role of exercise and physical activity on aging-related diseases and geriatric syndromes. SPORT TK-Revista EuroAmericana de Ciencias del Deporte. 2022;11:6-6. [DOI:10.6018/sportk.464401]
28. Francois ME, Little JP. Effectiveness and safety of high-intensity interval training in patients with type 2 diabetes. Diabetes Spectrum. 2015;28(1):39-44. [DOI:10.2337/diaspect.28.1.39] [PMID] [PMCID]
29. Sjöros TJ, Heiskanen MA, Motiani KK, Löyttyniemi E, Eskelinen JJ, Virtanen KA, et al. Increased insulin-stimulated glucose uptake in both leg and arm muscles after sprint interval and moderate-intensity training in subjects with type 2 diabetes or prediabetes. Scandinavian journal of medicine & science in sports. 2018; 28(1):77-87. [DOI:10.1111/sms.12875] [PMID]
30. Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. British journal of sports medicine. 2014;48(16):1227-34. [DOI:10.1136/bjsports-2013-092576] [PMID]
31. Álvarez C, Ramírez-Campillo R, Ramírez-Vélez R, Izquierdo M. Prevalence of non-responders for glucose control markers after 10 weeks of high-intensity interval training in adult women with higher and lower insulin resistance. Frontiers in Physiology. 2017;8:479. [DOI:10.3389/fphys.2017.00479] [PMID] [PMCID]
32. Zhang M, Lv XY, Li J, Xu ZG, Chen L. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Experimental diabetes research. 2008;2008. [DOI:10.1155/2008/704045] [PMID] [PMCID]
33. Eizadi M, Soory R, Ravasi A, Baesy K, Choobineh S. Relationship between TCF7L2 Relative Expression in Pancreas Tissue with Changes in Insulin by High Intensity Interval Training (HIIT) in Type 2 Diabetes Rats. SSU_Journals. 2017;24(12):981-93.
34. Gutch M, Kumar S, Razi SM, Gupta KK, Gupta A. Assessment of insulin sensitivity/resistance. Indian journal of endocrinology and metabolism. 2015;19(1):160. [DOI:10.4103/2230-8210.146874] [PMID] [PMCID]
35. Khosravi F, Kharazmi F, Kamran M, Malekzadeh K, Talebi A, Soltani N. The role of PPAR-γ and NFKB genes expression in muscle to improve hyperglycemia in STZ-induced diabetic rat following magnesium sulfate administration. International journal of physiology, pathophysiology and pharmacology. 2018;10(3):124.
36. Choi KM. Peroxisome proliferator activated receptor-δ (PPAR-δ). The Journal of Korean Diabetes Association. 2007; 31(4):297-301. [DOI:10.4093/jkda.2007.31.4.297]
37. Kim JC. The effect of exercise training combined with PPARγ agonist on skeletal muscle glucose uptake and insulin sensitivity in induced diabetic obese Zucker rats. Journal of exercise nutrition & biochemistry. 2016;20(2):42. [DOI:10.20463/jenb.2016.06.20.2.6] [PMID] [PMCID]
38. Pala R, Genc E, Tuzcu M, Orhan C, Sahin N, Er B, et al. L-Carnitine supplementation increases expression of PPAR-γ and glucose transporters in skeletal muscle of chronically and acutely exercised rats. Cellular and Molecular Biology. 2018;64(1):1-6. [DOI:10.14715/cmb/2018.64.1.1] [PMID]
39. Verma N, Chouhan U. Chemometric Modelling of PPAR-α and PPAR-γ Dual Agonists for the Treatment of Type-2 Diabetes. Current Science. 2016;356-67. [DOI:10.18520/cs/v111/i2/356-367]
40. Kim H il, Ahn Y ho. Role of peroxisome proliferator-activated receptor-γ in the glucose-sensing apparatus of liver and β-cells. Diabetes. 2004;53(suppl 1):S60-5. [DOI:10.2337/diabetes.53.2007.S60] [PMID]
41. Danaher J, Stathis CG, Wilson RA, Moreno-Asso A, Wellard RM, Cooke MB. High intensity exercise downregulates FTO mRNA expression during the early stages of recovery in young males and females. Nutrition & Metabolism. 2020;17(1):1-14. [DOI:10.1186/s12986-020-00489-1] [PMID] [PMCID]
42. Sailer C, Schmid V, Fritsche L, Gerter T, Machicao F, Niess A, et al. FTO genotype interacts with improvement in aerobic fitness on body weight loss during lifestyle intervention. Obesity facts. 2016;9(3):174-81. [DOI:10.1159/000444145] [PMID] [PMCID]
43. Zlatohlavek L, Vrablik M, Motykova E, Ceska R, Vasickova L, Dlouha D, et al. FTO and MC4R gene variants determine BMI changes in children after intensive lifestyle intervention. Clinical biochemistry. 2013;46(4-5):313-6. [DOI:10.1016/j.clinbiochem.2012.11.017] [PMID]
44. Kamura Y, Iwata M, Maeda S, Shinmura S, Koshimizu Y, Honoki H, et al. FTO gene polymorphism is associated with type 2 diabetes through its effect on increasing the maximum BMI in Japanese men. PLoS One. 2016;11(11):e0165523. [DOI:10.1371/journal.pone.0165523] [PMID] [PMCID]
45. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature genetics. 2010;42(11):937-48. [DOI:10.1038/ng.686] [PMID] [PMCID]
46. Yang J, Loos RJ, Powell JE, Medland SE, Speliotes EK, Chasman DI, et al. FTO genotype is associated with phenotypic variability of body mass index. Nature. 2012;490(7419):267-72. [DOI:10.1038/nature11401] [PMID] [PMCID]
47. Zhang X, Qi Q, Zhang C, Smith SR, Hu FB, Sacks FM, et al. FTO genotype and 2-year change in body composition and fat distribution in response to weight-loss diets: the POUNDS LOST Trial. Diabetes. 2012;61(11):3005-11. [DOI:10.2337/db11-1799] [PMID] [PMCID]
48. Fredriksson R, Hagglund M, Olszewski PK, Stephansson O, Jacobsson JA, Olszewska AM, et al. The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology. 2008;149(5):2062-71. [DOI:10.1210/en.2007-1457] [PMID]
49. Gerken T, Girard CA, Tung YCL, Webby CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318 (5855):1469-72. [DOI:10.1126/science.1151710] [PMID] [PMCID]
50. da Silva DE, Grande AJ, Roever L, Tse G, Liu T, Biondi-Zoccai G, et al. High-intensity interval training in patients with type 2 diabetes mellitus: a systematic review. Current atherosclerosis reports. 2019;21(2):8. [DOI:10.1007/s11883-019-0767-9] [PMID]
51. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, McGee SL, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of physiology. 2008;586(1):151-60. [DOI:10.1113/jphysiol.2007.142109] [PMID] [PMCID]
52. Little JP, Gillen JB, Percival ME, Safdar A, Tarnopolsky MA, Punthakee Z, et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. Journal of applied physiology. 2011;111(6):1554-60. [DOI:10.1152/japplphysiol.00921.2011] [PMID]
53. Marcinko K, Sikkema SR, Samaan MC, Kemp BE, Fullerton MD, Steinberg GR. High intensity interval training improves liver and adipose tissue insulin sensitivity. Molecular metabolism. 2015;4(12):903-15. [DOI:10.1016/j.molmet.2015.09.006] [PMID] [PMCID]
54. Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Scientific reports. 2017;7(1):1-10. [DOI:10.1038/s41598-017-00276-8] [PMID] [PMCID]
55. de Souza JF, Dáttilo M, de Mello MT, Tufik S, Antunes HK. High-intensity interval training attenuates insulin resistance induced by sleep deprivation in healthy males. Frontiers in physiology. 2017;8:992. [DOI:10.3389/fphys.2017.00992] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Health Sciences

Designed & Developed by : Yektaweb