دوره 12، شماره 4 - ( 9-1403 )                   جلد 12 شماره 4 صفحات 290-281 | برگشت به فهرست نسخه ها

Ethics code: 1473601
Clinical trials code: 1473601


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghazanfari A, Fayyaz Movaghar A. Using the Bayesian Model Averaging Approach for Genomic Selection by Considering Skewed Error Distributions. Iran J Health Sci 2024; 12 (4) :281-290
URL: http://jhs.mazums.ac.ir/article-1-967-fa.html
Using the Bayesian Model Averaging Approach for Genomic Selection by Considering Skewed Error Distributions. علوم بهداشتی ایران. 1403; 12 (4) :281-290

URL: http://jhs.mazums.ac.ir/article-1-967-fa.html


چکیده:   (550 مشاهده)
Background and Purpose: Genomic selection is used to select candidates for breeding programs for organisms. In this study, we use the Bayesian model averaging (BMA) method for genomic selection by considering the skewed error distributions.
Materials and Methods: In this study, we apply the BMA method to linear regression models with skew-normal and skew-t distributions to determine the best subset of predictors. Occam’s window and Markov-Chain Monte Carlo model composition (MC3) were used to determine the best model and its uncertainty. The Rice SNP-seek database was used to obtain real data, which included 152 single nucleotide polymorphisms (SNPs) with 6 phenotypes.
Results: Numerical studies on simulated and real data showed that, although Occam’s window ran faster than the MC3 method, the latter method suggested better linear models for the data with both skew-normal and skew-t error distributions.
Conclusion: The MC3 method performs better than Occam’s window in identifying the linear models with greater accuracy when dealing with skewed error distributions.
 
متن کامل [PDF 1084 kb]   (144 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: آمار زیستی

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iranian Journal of Health Sciences

Designed & Developed by : Yektaweb